
European Society of Computational Methods
in Sciences and Engineering (ESCMSE)

Journal of Numerical Analysis,
Industrial and Applied Mathematics

(JNAIAM)
vol. 1, no. 1, 2006, pp. 5-12

ISSN 1790–8140

Numerical Solution of General Bordered ABD Linear
Systems by Cyclic Reduction

P. Amodio∗, I. Gladwell† and G. Romanazzi∗

∗ Dipartimento di Matematica, Università di Bari, I-70125 Bari, Italy
† Department of Mathematics, Southern Methodist University, Dallas, TX 75275, USA

Received 2 December, 2005; accepted in revised form 13 January, 2006

Abstract: We generalize the cyclic reduction algorithm to the solution of Bordered ABD
linear systems with blocks of different sizes and with different overlaps. This kind of sys-
tem often arises from the numerical approximation of BVPs with nonseparated boundary
conditions. In particular, in our experiments we refer to spline collocation techniques with
monomial and B-spline basis functions.

c© 2006 European Society of Computational Methods in Sciences and Engineering

Keywords: ABD systems, boundary value problem solvers.

Mathematics Subject Classification: 65L10, 15A23

1 Introduction

We analyze the solution of the BABD linear system

Ax = f (1)

with the coefficient matrix A having the structure shown in Figure 1.
This is the most general BABD matrix structure: we recognize boundary blocks Ba and Bb

on the first row, and block rows Vi defined such that there are overlapped columns only between
successive blocks. For this reason, each block Vi may be represented as

Vi =
(
Si−1 Ti Ri

)
, (2)

where the columns of Si−1 and Ri overlap columns of Vi−1 and Vi+1, respectively. Also V1 and VN
have the structure in (2): the first columns of V1 are overlapped with those of Ba while the last
columns of VN are overlapped with those of Bb, see Figure 1. We set ni × (mi−1 + ki + mi), the
size of each block Vi, where mi is the number of overlapped columns between the blocks Vi and
Vi+1, and n0 as the number of rows of the boundary blocks. Then,

N∑

i=0

ni =

N∑

i=0

mi +

N∑

i=1

ki (A is square)

6 P. Amodio, I. Gladwell and G. Romanazzi

A =

Ba Bb

V1

V2

V3

V4

. . .

. . .

VN

.

Figure 1: Structure of a general BABD matrix

and, for nonsingularity

ni ≥ ki, i = 1, . . . N,
ni + ni+1 ≥ ki +mi + ki+1, i = 1, . . . , N − 1.

(3)

We suppose that N is much larger than ni, mi and ki.
Solvers and packages for solving BABD (and ABD) linear systems have been considered in

[1, 7]. In [2, 3] we have already considered the cyclic reduction algorithm applied to a BABD
matrix with a simplified structure. In fact, in these papers we suppose that blocks Si and Ri are
square of dimension m and blocks Ti are null blocks. This means that the coefficient matrix is
block lower bidiagonal with an additional block in the right-upper corner. In [4] we also show
that the code BABDCR developed by two of the authors outperforms the existing codes RSCALE
and COLROW and may be used in place of COLROW when boundary value ODE problems with
nonseparated boundary conditions are considered.

On the other hand, BABD matrices with a more general structure often arise from the numerical
approximation of BVPs for ODEs and PDEs with nonseparated boundary conditions. Matrices
with nonnull blocks Ti arise, for example, from the numerical solution of linear two-point BVPs of
order m

u(m)(x)−
m∑

s=1

cs(x)u(s−1)(x) = f(x) for x ∈ [a, b]

with m linear boundary conditions

Baz(u(a)) +Bbz(u(b)) = d

using collocation at k Gaussian points in N subintervals with B-spline or monomial spline basis.
For example, when monomial splines are used, each block Vi is of size (k + m) × (k + 2m) and
boundary blocks Ba and Bb are square of dimension m. Moreover, m is the number of overlapped
columns with the previous and successive blocks (k is the number of non-overlapped columns); the
last m columns have the structure

Ri =

(
0
I

)
,

c© 2006 European Society of Computational Methods in Sciences and Engineering

Numerical solution of general Bordered ABD linear systems by cyclic reduction 7

where I is a m × m identity matrix (the last m rows represent the continuity conditions while
the remaining k rows in each block Vi arise from the collocation equation in the gaussian points).
When B-splines are used, then the block Vi is k× (k+m) (where k ≥ m) with m overlap columns
(Ri and Si have m columns).

The solution of such systems may be computed using COLROW (the size of blocks Vi is con-
stant) or ABDPACK which was developed to solve the linear systems arising in spline collocation
with monomial bases. All these packages are based on the Varah algorithm [8] which was originally
proposed to solve ABD systems, that is, for systems arising from the numerical approximation of
BVPs with separated boundary conditions. To apply them to a system arising from nonseparated
boundary conditions, these codes require to increase the size of each block Vi of the original system.

2 Cyclic reduction algorithm

Let us rewrite the coefficient matrix in Figure 1 as

A =

Ba Bb
S0 T1 R1

S1 T2 R2

S2 T3 R3

. . .

SN−1 TN RN

. (4)

In accordance with the structure of (4) we define the right hand side f =
(
fT0 fT1 . . . fTN

)T

where each fi is of length ni, and the solution vector x =
(
zT0 wT1 zT1 . . . wTN zTN

)T
, where

zi and wi are of length mi and ki, respectively.
We solve system (1) using a block cyclic reduction algorithm, that is, a recursive approach that

reduces the original linear system to subsystems with a smaller number of unknowns. The only
condition is that the first and the last unknowns z0 and zN are always among the unknowns of the
successive reduced systems, and also the first row containing the boundary blocks is unchanged in
the reduction process (therefore, boundary blocks Ba and Bb are maintained in the first row of
each reduced system).

Following [2, 3], the first step of reduction would be to combine two successive block rows Vi
and Vi+1, for i = 1, 3, 5, . . ., in order to obtain a new block row V ′i involving at least the unknowns
zi−1 and zi+1. In [2, 3] we suggest eliminating the overlapped columns between Vi and Vi+1

by considering the partial pivoting LU factorization of the block

(
Ri
Si

)
. This approach is not

appropriate here since the blocks Ti becomes larger in the successive reduced systems and hence
the computational cost is large.

It is preferable to consider the partial pivoting LU factorization:

Pi

(
Ti Ri

Si Ti+1

)
=

(
Li
Gi

)
Ui =

(
I
Fi I

)(
LiUi
O

)
, (5)

where Li and Ui are square matrices and Fi = GiL
−1
i . Now, from (5) we have

(
I
−Fi I

)
Pi

(
Si−1 Ti Ri

Si Ti+1 Ri+1

)
=

(
S̃i−1 LiUi R̃i+1

S′i−1 R′i+1

)
(6)

(
I
−Fi I

)
Pi

(
fi
fi+1

)
=

(
f̃i
f ′i+1

)
. (7)

c© 2006 European Society of Computational Methods in Sciences and Engineering

8 P. Amodio, I. Gladwell and G. Romanazzi

From the second row of (6) and (7) we have a new equation involving zi−1 and zi+1, that is, a
reduced system with dN/2e+ 1 block rows and unknowns.

If for each index i we have mi = m and ki = k and therefore n0 = m, ni = m+ k for i ≥ 1, the
computational cost of this first step is

14
3 m

3 + 16m2k + 16mk2 + 16
3 k

3 − 3
2m

2 − 4mk − 2k2 − 1
6m− 1

3k (8)

for each of the N/2 reductions. This case appears when collocation for monomial spline is consid-
ered. On the contrary, for B-spline we must set mi = m and ki = k ≡ k −m.

In (8) we have considered any power of m and k because these values may be quite different.
The reduction process may be optimized by taking into account that the matrix in (5) is not

full. Moreover, the unknowns wi are only multiplied by Ti which is contained in block Vi. For this
reason we may consider a condensation step (see [5]) in order to eliminate, locally in each Vi, the
dependence on wi. This step may be also viewed as the first reduction step that eliminates the odd
unknowns wi of the solution vector x. We observe that blocks Ti of size mi × ki, have full rank ki
because they are not overlapped by consecutive Vi blocks. So, we may determine the factorization:

P̃iTi =

(
L̃i
G̃i

)
Ũi =

(
I

F̃i I

)(
L̃iŨi
O

)
, (9)

where L̃i and Ũi are square matrices and F̃i = G̃iL̃
−1
i .

Multiplying Vi on the left by P̃i and the inverse of the lower triangular matrix in the last term
of (9) we obtain

(
I

−F̃i I

)
P̃i
(
Si−1 Ti Ri

)
=

(
S̃i−1 L̃iŨi R̃i
Ŝi−1 R̂i

)
. (10)

Analogously, we perform the same operations on the right hand side fi thus obtaining the
vectors f̃i and f̂i for the right side of (10). The row with the boundary blocks and the second row
of (10) give the linear system

Ba Bb
Ŝ0 R̂1

Ŝ1 R̂2

. . .
. . .

ŜN−1 R̂N

z0

z1

z2

...
zN

=

f0

f̂1

f̂2

...

f̂N

. (11)

The system with matrix (11) has dimension equal to

N∑

i=0

mi = n0 +

N∑

i=1

(ni − ki) and no longer

depends on the unknowns wi. These unknowns will be computed in the last step of the cyclic
reduction back-substitution phase (when all the zi have been computed) by using the first row of
(10)

L̃iŨiwi = f̃i − S̃i−1zi−1 − R̃izi.
Factorization (10) does not require additional memory since F̃i may be saved together with L̃i and
Ũi in place of Ti. Therefore, this condensation should be considered as a (completely parallelizable)
initial step to be applied to ABD or BABD matrices in order to simplify their structure before
factorization.

c© 2006 European Society of Computational Methods in Sciences and Engineering

Numerical solution of general Bordered ABD linear systems by cyclic reduction 9

Returning to the solution of (1), system (11) may be further on reduced by considering the

cyclic reduction algorithm in [2, 3] (even if blocks Ŝ′i and R̂′i are not square). At the first step, we
consider the LU factorization of the (ni − ki + ni+1 − ki+1)×mi matrix (of rank mi)

Pi

(
R̂i
Ŝi

)
=

(
Li
Gi

)
Ui =

(
I
Fi I

)(
LiUi
O

)

that, applied to whole block rows i and i+ 1 in (11), gives

(
I
−Fi I

)
Pi

(
Ŝi−1 R̂i

Ŝi R̂i+1

)
=

(
S̄i−1 LiUi R̄i
S′i−1 R′i

)
, (12)

whose second row is independent of zi. The first row may be used to compute zi from zi−1 and
zi+1.

This last factorization requires additional memory for the fill-in blocks Fi. After this step we
obtain the same reduced matrix as by the previous approach, but with a number of operations (in
case of constant m and k)

4m2k + 2mk2 + 2
3k

3 −mk − 1
2k

2 − 1
6k (13)

for each of the N blocks Vi, and
14
3 m

3 − 3
2m

2 − 1
6m (14)

for each of the N/2 reductions. Hence, we save (4m2k + 6mk2 + 2k3 −mk − 1
2k

2)N operations.
Iterating this last step on the successively reduced systems we obtain, after dlog2Ne steps, a

2× 2 block full linear system

(
Ba Bb
S∗0 R∗N

)(
z0

zN

)
=

(
f∗0
f∗N

)
. (15)

The factorization and the solution of (15) gives the first and the last unknown of x. Successively,
a back substitution phase allows us to compute, in reverse order, all the other unknowns.

If m and k are constant, the computational cost of the algorithm, that we call GBABDCR, is

(14
3 m

3 + 4m2k + 2mk2 + 2
3k

3 − 3
2m

2 −mk − 1
2k

2 − 1
6m− 1

6k)N. (16)

If k = 0 (all columns overlap), from (16) the cost is
(

14
3 m

3 − 3
2m

2 − 1
6m
)
N as in the BABDCR

algorithm in [3]. The additional memory requirement (fill-in) is m2N since the factorization of the
Ti blocks does not require fill-in.

3 Numerical comparisons

First, we compare the two different cyclic reduction based approaches proposed above. We aim
to prove, rather than simply theoretically (GBABDCR requires less computational cost and stor-
age), that condensation may reduce the execution time. We call GBABDCR-0 the non optimized
algorithm that, at the first reduction step, uses the factorization (5). Supposing that m and k are
constant, then recall that the computational cost of GBABDCR-0 is

(
14
3 m

3 + 8m2k + 8mk2 + 8
3k

3 − 3
2m

2 − 2mk − k2 − 1
6m− 1

6k
)
N (17)

which is slight larger than that in (16).

c© 2006 European Society of Computational Methods in Sciences and Engineering

10 P. Amodio, I. Gladwell and G. Romanazzi

Second, we compare these codes with COLROW [6] which is one of the fastest available codes
for linear systems with ABD coefficient matrix

A =

Btop
S0 T1 R1

S1 T2 R2

. . .

SN−1 TN RN
Bbot

(18)

where blocks Si, Ti and Ri have constant size (m is the overlap between different rows and k is
the number of non overlapped columns). COLROW uses a modified alternate row and column
elimination which does not create fill-in. For the matrix (18) it has computational cost

2
3 (m+ k)3 + (m+ k)2mbot +m2mtop +mmtopmbot,

where mtop and mbot are the number of rows of Btop and Bbot, respectively , with mtop+mbot = m.
To apply COLROW to a BABD matrix, we rearrange the system as follows:

Ã =

−I I
S0 0 T1 R1

−I 0 0 I
S1 0 T2 R2

−I 0 0 I
. . .

SN−1 0 TN RN
−I 0 0 I

Bb Ba

x̃ =
(
z0 y0 w1 z1 y1 w2 . . . zN−1 yN−1 wN zN yN

)

f̃ =
(

0 f0 0 f1 0 f2 . . . 0 fN
)

(19)

where Si, Ti, Ri, fi, zi, wi are the same blocks and vectors as above and vectors yi are new
unknowns yN = . . . = y1 = y0 = z0. Then, we can apply COLROW to the ABD linear system (19)
and compare its results to those of BABDCRG and BABDCR-0 applied to the original BABD
linear system. In this case, the cost of COLROW is

(
49
3 m

3 + 20
3 m

2k + 4mk2 + 2
3k

3
)
N.

We used a AlphaServer DS20E with a 667 MHz EV67 processor and a Compaq Fortran 90
(formerly Digital Fortran 90) compiler. For each test, the elements of the BABD coefficient matrix
A were generated randomly. The right hand side f was set so that the solution x = (1, . . . , 1)T .

In Table 1 we show the execution times, in seconds, as functions of k, m and N , varying
each parameter in turn and fixing the others. The timings confirm our expectations from theory:
GBABDCR is faster than GBABDCR-0 and COLROW, though the speed-ups are lower than
theory suggests. Moreover, the gap between GBABDCR and GBABDCR-0 increases for larger
values of k/m; conversely, GBABDCR improves over COLROW when m/k increases. The ratios
of costs between GBABDCR-0 and GBABDCR and between COLROW and GBABDCR are ap-
proximately 1.5 and 2.8, respectively. In Table 2 we show errors for the same tests. Note that
the order of the error is the same for all the methods. The case m = 5, k = 10, N = 2000 gives
a slight larger than predicted error, but this is true for all the methods and probably depends on
the chosen random matrix.

c© 2006 European Society of Computational Methods in Sciences and Engineering

Numerical solution of general Bordered ABD linear systems by cyclic reduction 11

Table 1: Execution times (in seconds) to solve linear systems with varying m, k and N using
GBABDCR, GBABDCR-0 and COLROW.

problem GBABDCR GBABDCR-0 COLROW
m = 5, k = 10, N = 2000 6.53E-2 9.86E-2 0.148
m = 10, k = 10, N = 2000 0.156 0.222 0.439
m = 20, k = 10, N = 2000 0.529 0.651 1.581
m = 10, k = 5, N = 2000 0.106 0.135 0.317
m = 10, k = 10, N = 2000 0.156 0.222 0.439
m = 10, k = 20, N = 2000 0.305 0.490 0.733
m = 10, k = 10, N = 1000 7.12E-2 0.105 0.208
m = 10, k = 10, N = 2000 0.156 0.222 0.439
m = 10, k = 10, N = 4000 0.345 0.463 0.876

Table 2: Computed errors in the solution of linear systems with varying m, k and N using GBAB-
DCR, GBABDCR-0 and COLROW.

problem GBABDCR GBABDCR-0 COLROW
m = 5, k = 10, N = 2000 4.12E-07 4.09E-07 9.95E-07
m = 10, k = 10, N = 2000 5.56E-10 9.75E-10 3.53E-10
m = 20, k = 10, N = 2000 1.32E-10 6.40E-11 8.15E-11
m = 10, k = 5, N = 2000 4.72E-11 7.88E-11 3.47E-11
m = 10, k = 10, N = 2000 5.56E-10 9.75E-10 3.53E-10
m = 10, k = 20, N = 2000 4.13E-11 3.41E-11 3.71E-11
m = 10, k = 10, N = 1000 7.08E-11 4.04E-11 4.61E-11
m = 10, k = 10, N = 2000 5.56E-10 9.75E-10 3.53E-10
m = 10, k = 10, N = 4000 5.56E-10 1.09E-09 3.53E-10

Acknowledgment

This work was partially supported by COFIN-PRIN 2004 (project “Metodi numerici e software
matematico per le applicazioni”).

References

[1] P. Amodio, J.R. Cash, G. Roussos, R.W. Wright, G. Fairweather, I. Gladwell, G.L. Kraut
and M. Paprzycki, Almost block diagonal linear systems: sequential and parallel solution
techniques, and applications, Numer. Linear Algebra Appl., 7 (2000), 275-317.

[2] P. Amodio and M. Paprzycki, A cyclic reduction approach to the numerical solution of bound-
ary value ODEs. SIAM J. Sci. Comp 18 1 (1997), 56-68.

[3] P. Amodio and G. Romanazzi, BABDCR: a Fortran 90 package for the solution of Bordered
ABD systems, ACM Trans. Math. Software 32 4 (2006), to appear.

[4] P. Amodio, I. Gladwell and G. Romanazzi, An algorithm for the solution of Bordered ABD
linear systems arising from BVPs, Technical Report n. 35/05, Dipartimento di Matematica,
Università di Bari, 2005 (submitted).

[5] U.M. Ascher, S. Pruess and R.D. Russell, On spline basis selection for solving differential
equations, SIAM J. Numer. Anal., 20 1 (1983), 121-142.

c© 2006 European Society of Computational Methods in Sciences and Engineering

12 P. Amodio, I. Gladwell and G. Romanazzi

[6] J.C. Diaz, G. Fairweather and P. Keast, FORTRAN packages for solving certain almost block
diagonal linear systems by modified alternate row and column elimination, ACM Trans. Math.
Software 9 3 (1983) 358-375.

[7] G. Fairweather and I. Gladwell, Algorithms for Almost Block Diagonal Linear Systems, SIAM
Review 46 1 (2004) 49-58.

[8] J.M. Varah, Alternate row and column elimination for solving certain linear systems, SIAM
J. Numer. Anal. 13 (1976) 71-75.

c© 2006 European Society of Computational Methods in Sciences and Engineering

