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Abstract: In this paper we present a parsimonious approximation of a Gaussian mixture
when its components share a common mean value, i.e. a scale mixture. We show that a
shifted and scaled Student’s t-distribution can be approximated to this type of mixture,
and use the result to develop a hypothesis test for the equality of the components mean
value. A simulation study to check the quality of the approximation is also provided,
together with an application to logarithmic daily returns.
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1 Introduction

A random variable (rv) X is called a Gaussian convex mixture of N € N Gaussian subpopulations
or components if its probability density function f, is given by

N 2 N
1 1 /(x—p,;
j=1 J J

Jj=1

where p;, o; and w; are respectively the mean value, the standard deviation and the weight
of the j-th subpopulation, for j = 1,..., N. Applications can be found in Economics [1, 5, 11],
Biology [8, 15] and Astronomy [12], among others [7]. Parameters are usually estimated with the
Expectation Maximization (EM) algorithm, a variation of the maximum likelihood method [3, 14].
However, the EM algorithm may not lead to good estimates, even when the initial estimates
are equal to the real parameters values [7, 17]. The EM algorithm only guarantees that a local
maximum is found and, therefore, the obtained estimates must be carefully analysed.

When in (1) p; = p for j = 1,..., N we have a Gaussian scale mixture. Since the derivative of
f, denoted by f’, is given by
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the mixture is unimodal with mode x = p. Therefore, multimodal data should be a sufficient
condition to reject the equal mean value hypothesis.
The X cumulant generating function can be developed as
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where ox (t) = F [e’itX } denotes the characteristic function. Previous equation leads to mean,
denoted by i, and centered moments, denoted by s,

N N
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Thus, the skewness and the kurtosis coefficients, are given respectively by
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and therefore the Gaussian scale mixtures are always symmetric around p (symmetry could also
be derived from noting that ¢x_,(t) is an even function).

2 Gaussian mixtures and Student’s t-distribution

Using the Pearson system of distributions [9], it is possible to show that the distribution of a
Gaussian scale mixture can be approximated by a location-scale Student’s ¢-distribution.

Theorem 1
Let X be a Gaussian mizture as defined in (1) where all subpopulations have equal mean value, i.e.
w1 = po =...= uny = pu. Then X can be approzimated by Y,

YNt(H)mU), oc>0,v>0

where (p,0,v) denotes the location, scale and freedom degrees of the Student’s t-distribution as

[N
defined in [9], i.e. 0 = | > wjo; and v is selected in order to fulfil B2 x = Pay.
j=1

Proof
Student’s t-distribution has polynomial tails, heavier than the negative square exponential Gaus-
sian tails, and therefore Student’s ¢-distribution kurtosis is always greater than 3. Since the mixture
is symmetric (51 = 0), it can be approximated by a location-scale Student’s ¢-distribution, i.e. a
Pearson type VII distribution if 85 > 3. Therefore, it is sufficient to establish that the rv X has
kurtosis greater than 3. From the kurtosis coefficient defined in (3),
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Cauchy-Schwarz inequality,
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can be applied considering z; = | /wjajz» and y; = ,/wj, leading to
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and therefore the mixture can be approximated by a location-scale Student’s t¢-distribution. In
fact, we are performing a location-scale transformation ¥ = pu + 4/ jyzl w;o;t, matching X and

Y moments.

Theorem 1 allows to perform a test for the equality of the mean values,

Hy:pp=ps=...= uny = p. (4)

For N = 2, the condition #; = 0 on the Gaussian mixture implies that p; = po or w = 0.5 and

0? = 03 [4]. For the second condition, the kurtosis of the mixture becomes

—0.125 (1 — o)™
By = (11 — p2) 13,
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leading to B2 < 3, and thus the Student’s ¢-distribution approximation is only valid when the
condition p1 = po is fulfilled. Nevertheless, for N > 3 it is possible to have §; = 0 and By > 3
without puy = ps = ... = uy = p being fulfilled. Even though that situation is very unlikely since
it only happens if the third cumulant is equal to zero, that is, if Zivzl oy (/L;’ + 3#3'0]2-) + 243 —

3;LZ§-V:1 w; (/L? + crjz-) =0 [6]. Thus, 81 =0 and B2 > 3 may not entail g1 = ps = ... = uy, even
theoretically. On the other hand, the conditions 51 # 0 or 83 < 3 or multimodal data imply that
at least one of the mean values is different from the others. Hence, and assuming an underlying
unimodal model, Table 1 summarizes the main conclusions.

Table 1: Main conclusions for equality of the components mean values test, where V represents
OR and A represents AND conditions.

Decision
Hy : Reject Hy (B1 #0V B2 < 3) | Don’t reject Hy (81 =0A B2 > 3)
i =..=unx | N=2 implies p1 # po implies p1 = po
N > 2 | implies 3(4,7) : ps # pj, 1 #J likely p1 = o = ... = pun

Under the previous considerations, the Kolmogorov-Smirnov or other distribution fitting test
[16] may be used to check the Student’s ¢-distribution approximation under Hy and therefore to
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perform the test for the equality of mean values. As a side result, note that if the Student’s
t-distribution approximation is valid, then the underlying distribution can be considered as sym-
metric and more heavy tailed than the Gaussian one.

3 A simulation study for the ;= u, test

To evaluate the proposed test accuracy, a simulation study was performed. Note that there are
many parameters combinations, even when considering only two subpopulations, and thence any
simulation study only represents a small subset of all the possible combinations of parameters.
We believe that the conclusions within this section can be generalized for others subsets, however
different parameters subsets require different simulation studies [6].

To set the parameters region for the simulation study, let us consider the model of daily log-
returns, an often studied problem in finances. Log-returns are defined as

Ty = In (Xt) —In (thl) )

where X; represents the close index value of the ¢t-th day.

Several models have been considered for this kind of data, such as Gaussian mixtures, Student’s
t-distribution with location, scale or even skewness, stable Paretian models, generalized hyperbolic
or generalized logF, among others [1, 5, 11, 13]. Unlike the often used stable Paretian models with
a < 2, the Gaussian mixtures have all order moments. Besides, they have a very flexible shape.
Gaussian mixtures are recommended in [1, 11], preferentially with a small number of components
to avoid over-fitting.

For the financial data problem, it is usually assumed that the model kurtosis should be higher
than the Gaussian kurtosis. Besides, the data mean varies near zero, and skewness is sometimes
present [11].

3.1 Fitting a two component Gaussian mixture to a data set

Let us consider the data set that corresponds to S&P 500 stock index daily returns, available on
http://finance.yahoo.com/q/hp?s=\%5Egspc, between 01-08-1984 and 31-07-2014 (20 years of
data) for a total of 5036 observations. For this sample, descriptive statistics are presented in Table
2.

Table 2: Descriptive statistics for the S&P 500 stock index daily returns

o~

n [i H(2) 531 B2
5036 | -0.00028 | 0.00015 | -0.24586 | 11.17124

The unknown parameters of the Gaussian mixture, (u1, g2, 01,02,w), where the parameter w
corresponds to the first component weight, were estimated by the EM algorithm using Matlab
R2012b software [7] and are displayed in Table 3.

Table 3: Estimated parameters for the two components Gaussian mixture

w H1 H2 g1 g2

0.75823 | 0.00085 | -0.00148 | 0.00712 | 0.02122
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Thus, we investigated the performance of the test for the equality of the mean values, consid-
ering parameter values near the ones estimated for the S&P 500 stock index daily returns data.

3.2 Simulations results

Let us consider the hypotheses Hy : 11 = o and Hy : pup # pa. As usual, the test power is defined
as 1— 3 = P(reject Hy when Hj is false). All the simulations were performed considering 1000 runs
of samples with 5000 observations each. For each parameter combination, the test power, 1 — 3, is
estimated by the number of location-scale Student’s ¢-distribution approximations rejected by the
Kolmogorov-Smirnov test, at 5% significance level, over 1000. Lilliefors test would be preferable,
since the Student’s t-distribution parameters are estimated from the sample, but this is a less
powerful test [16] and as far as we know it is not yet implemented in any software for the location-
scale Student’s t-distribution. Matching the theoretical moments from the Gaussian mixture with
the theoretical moments of the Student’s ¢-distribution we can find out the parameters needed for
the Kolmogorov-Smirnov test.

If (u2,02) = (—0.0015,0.0212), the test power as a function of y; is plotted in Figure 1, where
o1 = 0.005, o1 = 0.007 and o7 = 0.010 for the dotted, dashed and thick curves, respectively, and
w = 0.7, w = 0.75 and w = 0.8 for the left, center and right figures, respectively. We considered
0.0002 increases of p; (from —0.0015 to 0.0065) and the points were interpolated by a third order
spline. Figure 2 is similar, but here we have w = 0.7, w = 0.75 and w = 0.8 for the dotted, dashed
and thick curves, respectively, and o1 = 0.005, o1 = 0.007 and o1 = 0.010 for the left, center and
right figures, respectively.
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Figure 1: Test power for w = 0.7, w = 0.75 and w = 0.8 as a function of u; and 0.

. ’

03 7
‘ 1

4

02 . !

. 7
ol . 7
oy

t 1 + " + m
0002 0002 0004 0.006 0002 0002 0004 0.006 0002 0002 0.004 0006

Figure 2: Test power for o7 = 0.005, 01 = 0.007 and o7 = 0.010 as a function of p; and w.

Clearly the test power increases when p; is farther from ps = —0.0015, as expected. Figure 2
shows that when w increases, i.e. more unbalanced mixtures, then 1 — 3 decreases, since the dot
line dominates the dash line, and the dash line dominates the thick line in yy axis. On the other
hand, Figure 1 shows that when o increases, i.e. the subpopulations are more mixed, then 1 — 3

© 2017 European Society of Computational Methods in Sciences and Engineering (ESCMSE)



6 M. Felgueiras, J. Martins, R. Santos

decreases, since the dot line dominates the dash line, and the dash line dominates the thick line in
yy axis. Therefore, small values of o1 and balanced values of w and 1 — w contribute to a higher
test power.

Our estimated parameters in Table 3 are similar to the ones that originate the dash line in the
center graph of both figures. Table 4 presents the obtained test powers for that situation, that is,
when (w, po, 01, 02) = (0.75,—0.0015,0.007,0.0212). Note that the test seems quite sensible to the
mean values difference, since when p; = 0.0031, then pe — p1 = —0.0046 and 1 — 5 = 0.5130, that
is, it is likely to be detected a mean values difference that is approximately two thirds of o7 and
one fifth of o9. However, for pq = 0.0009, the test power is small (1 — 8 = 0.0230) and therefore
mean values are expected to be considered as equal.

Table 4: Obtained test power 1 — 3 as a function of g1 when (w,ps,01,02) =
(0.75,—0.0015,0.007,0.0212)

H1 -0.0015 | -0.0009 | -0.0003 | 0.0003 | 0.0009 | 0.0015 | 0.0021 | 0.0023 | 0.0025 | 0.0027
1-p 0 0 0.0010 | 0.0010 | 0.0230 | 0.0490 | 0.1620 | 0.2160 | 0.2590 | 0.3040
“1 0.0029 0.0031 0.0033 | 0.0035 | 0.0037 | 0.0039 | 0.0045 | 0.0051 | 0.0057 | 0.0063
1-p 0.4380 0.5130 0.6040 | 0.7010 | 0.7400 | 0.8250 | 0.9580 | 0.9920 | 0.9990 1

4 Comparing models

The comparative measures Akaike information criterion (AIC) and Bayesian information criterion
(BIC) are two popular measures for comparing maximum likelihood models of non-nested models
[2], such as Student’s ¢-distribution and Gaussian mixtures models. Other alternatives are, for
instance, the Bayes factor or the Schwarz criterion [10], which will not be used in this work. AIC
and BIC statistics are defined as

AIC = —21n(likelihood) + 2p

and

BIC = —21n(likelihood) + pIn(n)

where n is the sample size and p the number of estimated parameters. AIC and BIC can be viewed
as measures that combine both fit and complexity. Fit is measured negatively by —2 In(likelihood);
the larger the value, the worse the fit. Complexity is measured positively, either by 2p (AIC) or
pln(n) (BIC). Given two models fitting the same data, the model with the smallest value of the
information criterion should be preferred. BIC measure leads to more parsimonious models than
AIC measure. When the two criteria do not provide the same solution, a final decision should be
taken according to the analyst experience.

5 Fitting Gaussian mixtures and Student’s t-distribution to the data

5.1 The data set

The analysed data set corresponds to the one introduced in subsection 3.1. To assess the approx-
imation in Theorem 1, we considered different time intervals — 1 year, 5 years, 10 years, 15 years
and 20 years — counting backwards from 31-07-2014. Some descriptive statistics for data in each
time interval are presented in Table 5.
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Table 5: Some descriptive statistics

|| || 1 year | 5 years | 10 years | 15 years | 20 years ||
n 251 1257 2517 3773 5036
n 0.00049 0.00052 0.00022 0.00010 | —0.00028
T2 0.00004 0.00011 0.00017 0.00017 0.00015
51 —0.49510 | —0.48858 | —0.33722 | —0.17784 | —0.24586
Ba 4.30307 7.29288 | 14.1000 10.8356 11.1712

The data mean is always near 0. Besides, [i(2) seems immune to the length of time period
chosen for analysis (despite an initial increase form 0.00004 to 0.00011) and therefore models with
infinite variance, as the stable Paretian model with o < 2 [13] or the Student’s ¢-distribution with
v < 2 are not appropriate. Negative skewness, although not very sharp, is always present. Finally,
kurtosis is clearly above 3, and thence Gaussian mixtures or location-scale Student’s ¢-distribution
can be suitable options if the skewness is considered as negligible.

5.2 Selecting models

Using Matlab R2012b, parameters for Gaussian mixtures with two, three and four components are
estimated using the EM algorithm, selecting & observations from X at random as initial component
mean values and considering equal mixing proportions and variances for all components in the first
stage. As previously stated, authors advice Gaussian mixtures with a small number of components.
Besides, in this study Gaussian mixtures with more than four components lead only to negligible
improvements. Parameters for the Student’s ¢-distribution are estimated using the maximum
likelihood method. Next, the best model is selected for each period of time according with observed
AIC and BIC statistics, provided in Table 6.

Considering BIC measure, the Student’s ¢-distribution is always selected as the best model.
However, for AIC measure the best model changes according to the period of time considered,
between Gaussian mixtures with two, three and four components, although location-scale Student’s
t-distribution has presented similar results. Hence, if parsimonious is the priority for the researcher,
location-scale Student’s ¢-distribution is the advisable choice. Otherwise, Gaussian mixtures are a
better option, although it is unclear how many components should be selected since their optimal
number vary according to the time gap.

5.3 Testing the equality of the components mean values

The equality of the components mean values test, defined in (4), was carried out, leading to the
results displayed in Table 7.

Note that we do not need to know the number of components that we are testing, because
Student’s t¢-distribution approximation has the advantage of being independent of the number of
components. However, conclusions are different according to that number, as previously stated.
The observed p-values are always “large” enough, thence the Student’s ¢-distribution is never
rejected. Naturally the p-value decreases with the increase of n, as it is usual in this kind of test.
For the Gaussian mixture with two subpopulations, the preferable option according with [1], the
decision implies that the mean values of the components can be considered the same.

Graphically, the location-scale Student’s ¢-distribution seems to fit well to the data represented
in the histogram (Figure 3) and the probability plot for the estimated Student’s t-distribution
(Figure 4) does not reveal relevant problems, although the extreme values present some lack of fit.

© 2017 European Society of Computational Methods in Sciences and Engineering (ESCMSE)



8 M. Felgueiras, J. Martins, R. Santos

Table 6: AIC and BIC values for the fitted models

[ | AIC | BIC |
location-scale Student’s ¢ | -1816.47 -1811.42
1 year 2 Gaussian mixture -1817.50 | -1799.87
3 Gaussian mixture -1811.54 -1783.34
4 Gaussian mixture -1808.53 -1769.75
location-scale Student’s ¢ | -8154.54 -8146.27
5 years 2 Gaussian mixture -8153.15 -8127.47
3 Gaussian mixture -8162.16 | -8121.06
4 Gaussian mixture -8158.25 -8101.75
location-scale Student’s ¢ | -15759.2 -15749.5
10 years | 2 Gaussian mixture -15704.0 | -15674.8
3 Gaussian mixture -15770.1 -15723.5
4 Gaussian mixture -15776.4 | -15712.3
location-scale Student’s ¢ | -23055.8 -23045.3
15 years | 2 Gaussian mixture -22992.6 -22961.4
3 Gaussian mixture -23079.0 -23029.1
4 Gaussian mixture -23081.0 | -23012.4
location-scale Student’s ¢ | -31338.1 -31327.1
20 years | 2 Gaussian mixture -31248.8 -31216.2
3 Gaussian mixture -31361.6 | -31309.4
4 Gaussian mixture -31356.8 -31285.1

Table 7: Obtained p-values for the equality of the components mean values test

1 year | 5 years | 10 years | 15 years | 20 years
p-value | 0.87742 | 0.59909 | 0.19535 | 0.17060 | 0.11653

T T T T T T T T T T T T T T T

701 one year data |{ —— twenty years data
ﬁ Is t-Student & Is t-Student

501 -

40r

Density

201

. . . . n . .
—-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 006 0.08 0.1
Data Data

Figure 3: Fitted location-scale (Is) Student’s ¢ considering one year data (left) and twenty years
data (right).
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Figure 4: pp-plots for location-scale (Is) Student’s ¢ considering one year data (left) and twenty
years data (right).

Therefore, even if previously obtained AIC results show that Gaussian mixtures are preferable,
there is no evidence to support that the components mean values are different, and thus skewness
can be considered as irrelevant as stated in Section 2.

6 Conclusion

Gaussian mixtures are indeed a very powerful tool to fit a model to a data set, although caution
is advised in their application, especially whenever used in conjunction with the EM algorithm.
First, there is no straightforward way to select the number of components as was illustrated in
stock log-returns example. Besides, EM algorithm may not lead to accurate estimates, and it is
sensitive to the arbitrary initial estimates [7, 17]. Finally, the obtained model has a large number of
unknown parameters to estimate. For instance, a three component mixture has eight parameters.
Kon [11] analysed several unimodal stock log return indices, some much more skewed than the
S&P 500 analysed in this paper. In that situation, Student’s ¢-distribution approximation does
not provide a good fit, and Gaussian mixtures or other skewed models should be applied, despite
of the possible problems discussed above. For unimodal and slightly skewed data, a Student’s
t-distribution may be applied with possible good results. The simulation study shows that the
equality of mean values test is quite sensible for detecting mean values differences, considering two
subpopulations and parameters near the estimated ones for the data. For the S&P 500 stock index
log-returns, Student’s ¢-distribution always outperforms Gaussian mixtures, considering the BIC
measure, although, for the AIC statistic, the results are inconclusive. The Student’s ¢-distribution
approximation was never rejected by the Kolmogorov-Smirnov test and, therefore, no evidence
to deny that p1 = ... = uny was found. Summarizing, Student’s t-distribution seems to be an
advisable choice for unimodal and slightly skewed data, specially when parsimonious models are
preferred by the user.
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