
European Society of Computational Methods
in Sciences and Engineering (ESCMSE)

Journal of Numerical Analysis,
Industrial and Applied Mathematics

(JNAIAM)
vol. 4, no. 3-4, 2009, pp. 193-201

ISSN 1790–8140

An Efficient Scheme for Meshless Analysis

Based on Radial Basis Functions 1

S. Nakata2

Institute of Science and Engineering,
Ritsumeikan University,

Kusatsu, Shiga, 525-8577 Japan

Received 29 January, 2007; accepted in revised form , 2009

Abstract: A meshless method based on radial point interpolation was recently developed as

an effective tool for solving partial differential equations, and has been widely applied to a

number of different problems. In addition to the primary advantage of the meshless meth-

ods that the computation is performed without any connectivity information between field

nodes, the radial point interpolation-based meshless method has several advantages such

as the stability of the shape functions and simple implementation of boundary condition

enforcement. This paper introduces a new scheme for the radial point interpolation-based

meshless method. This method enables fast computation by modifying the construction

and evaluation of the shape functions. Numerical examples are also presented to show that

a reliable solution can be obtained with low computational cost.

c© 2009 European Society of Computational Methods in Sciences and Engineering

Keywords: Partial Differential Equations, Meshless Method, Radial Basis Function, Radial

Point Interpolation

Mathematics Subject Classification: 65N30

1 Introduction

In recent years, the meshless method has been widely used to solve partial differential equations
(PDEs). The element-free Galerkin method (EFG) proposed by Belytschko et al. [1] is one such
meshless PDE solver. This method enables construction of shape functions using the technique of
moving least squares (MLS) approximation [2], which does not require node connectivity informa-
tion for constructing interpolating functions of distributed data. See [3] for more information.

The radial point interpolation method (RPIM) proposed by Wang and Liu [4] is another im-
portant meshless approach for boundary value problems. This method has been applied to many
kinds of actual problems such as 2- and 3-D solid analysis. See [4, 5, 6, 7] for more information.
One remarkable advantage of this method is that the shape functions possess the Kronecker delta
function property, which enables simple enforcement of Dirichlet boundary conditions. On the
other hand, evaluation of the RPIM shape functions involves high computational cost, since the

1Published electronically December 10, 2009
2E-mail: snakata@is.ritsumei.ac.jp

194 S. Nakata

shape functions are calculated as the solution of a linear system, and the coefficient matrix of the
linear system varies according to the point of interest. As a result, this can be a computational
bottleneck, particularly when the scale of the problem is large.

In this paper, we propose a method that enables fast evaluation of the RPIM shape functions
to overcome the above-mentioned shortcoming. The main idea for fast computation is as follows:

• Divide a bounding rectangle of the problem domain into small rectangular subdomains and,
for each subdomain, define a matrix for shape function construction that is constant in the
subdomain. The matrix can be implemented in the same idea as the RPIM, with small
modification of the definition of the shape functions.

• Compute decomposed forms of the matrices defined at all subdomains as pre-processing. The
decomposed form, such as LU decomposition, contributes to a reduction of computational
cost in solving linear systems.

Note that the matrices corresponding to all the subdomains are independent of the position where
the shape functions are evaluated: however, the matrices vary depending on the position in RPIM.
In this way, the matrices and the decomposed forms can be computed as a pre-processing—the
shape functions can be evaluated efficiently by solving the linear system using the decomposed
forms obtained in the pre-processing.

2 Construction of shape functions

Let Ω be a bounded domain in R
2 and consider the boundary value problem,







−∆u = f in Ω,

u = ū on ΓD,
∂u

∂n
= q̄ on ΓN,

where f is a field function given in Ω, ū is a Dirichlet condition given on ΓD, q̄ is a Neumann
condition given on ΓN and ∂/∂n is differentiation along the outer normal to ΓN.

We assume that N field nodes, x1, . . . ,xN , distributed in the problem domain and on its
boundary are given. Consider an approximation of the solution u(x) represented as follows:

u(x) ≈

N
∑

i=1

uiφi(x), (1)

where φi(x) is a shape function corresponding to each field node xi. The purpose here is to deter-
mine the unknown coefficients, ui, in (1), so that the approximate solution satisfies the boundary
conditions. These coefficients can be obtained as the solution of the linear system,

A
[

u1 · · · uN

]T
=

[

y1 · · · yN

]T
, (2)

aij =

∫

Ω

∇φi(x) · ∇φj(x)dx, yi =

∫

Ω

f(x)φi(x)dx +

∫

ΓN

q̄φi(x)dl, (3)

after enforcement of the Dirichlet boundary condition. In this section, we suggest a new definition
of the shape function as a modification of the definition of shape functions in RPIM.

c© 2009 European Society of Computational Methods in Sciences and Engineering (ESCMSE)

An Efficient Scheme for Meshless Analysis 195

Ω

point of interest x
(= centre of
 support domain)

field nodes

support domain

dx

dy

Figure 1: Support domain for RPIM shape function

support domain

Ω1

point of interest x

centre of support domain
(= center of Ωi)

Ω2 . . .

subdomain Ωi

dx

dy

Figure 2: Support domain for modified RPIM shape function

2.1 Shape function used in RPIM

The shape functions φi(x) used in the original RPIM are defined using a support domain centred
at a point of interest x [4]. An example of the rectangular support domain is shown in Fig. 1. The
size of the support domain, dx and dy, are determined as

dx = αxdcx, dy = αydcy, (4)

where dcx and dcy are average distances of the field nodes in x and y directions, respectively, and
αx and αy are user-defined parameters determining the size of the support domain. Note that
elliptic support domains used in [4] are also applicable.

Let the size of the support domain in x and y directions be dx and dy, respectively (as shown
in the same figure), n be the number of nodes inside the support domain and {x1, . . . ,xn} be the
field nodes. Then, the shape functions φ1(x), . . . , φn(x) corresponding to the nodes {x1, . . . ,xn}
are obtained as the solution of the linear system,

G
[

φ1(x), . . . , φn(x), φn+1(x), . . . , φn+m(x)
]T

=
[

b1(x), . . . , bn(x), p1(x), . . . , pm(x)
]T

, (5)

c© 2009 European Society of Computational Methods in Sciences and Engineering (ESCMSE)

196 S. Nakata

0

0.5

1

0

0.5

1

-0.5

0

0.5

1

1.5

xy

(a) RPIM shape function φi(x)

0

0.5

1

0

0.5

1

-0.5

0

0.5

1

1.5

xy

(b) modified RPIM shape function φi(x)

Figure 3: Example of RPIM, and modified RPIM shape functions corresponding to the node
xi = (0.8, 0.7), where αx = αy = 4.0, and the number of divisions of the domain Ω is 5 × 5, as
shown in Fig. 4.

where bi(x) are radial basis functions (RBF [4, 7]) centred at the field nodes, {p1(x), p2(x), . . .}
are monomial terms such as {1, x, y, . . .} and G is a symmetric matrix defined as

G =

[

B0 P0

PT
0 0

]

, B0 =







b1(x1) · · · bn(x1)
...

. . .
...

b1(xn) · · · bn(xn)






, P0 =







p1(x1) · · · pm(x1)
...

. . .
...

p1(xn) · · · pm(xn)






. (6)

The partial derivatives of the shape functions can also be obtained using the same matrix G,
defined in (6) as

G
[

∂
∂x

φ1(x), . . . , ∂
∂x

φn(x), ∂
∂x

φn+1(x), . . . , ∂
∂x

φn+m(x)
]T

=
[

∂
∂x

b1(x), . . . , ∂
∂x

bn(x), ∂
∂x

p1(x), . . . , ∂
∂x

pm(x)
]T

, (7)

G
[

∂
∂y

φ1(x), . . . , ∂
∂y

φn(x), ∂
∂y

φn+1(x), . . . , ∂
∂y

φn+m(x)
]T

=
[

∂
∂y

b1(x), . . . , ∂
∂y

bn(x), ∂
∂y

p1(x), . . . , ∂
∂y

pm(x)
]T

. (8)

There are several types of RBFs as introduced in [7]. One reasonable choice is a multi-quadrics
function,

bi(x) = (‖x − xi‖
2 + (αcdc)

2)q,

where αc and q are shape parameters. It is known in this case that the values αc = 4.0 and
q = 1.03 give a satisfactory result, and hence, we use these parameters throughout this paper. See
[7] for more information. Note that the support domain depends on the point of interest x, and
therefore, the matrix G varies with the position of the point of interest, x.

2.2 Modified definition of shape functions

We give another definition of the shape functions, such that the matrix G is independent of the
position of x in a certain region. In order to construct shape functions satisfying the property, we

c© 2009 European Society of Computational Methods in Sciences and Engineering (ESCMSE)

An Efficient Scheme for Meshless Analysis 197

xi

1

1 x

y

O

Figure 4: Example of nodes (11 × 11) in a problem domain Ω = [0, 1] × [0, 1]. Black dot indicates
a node xi = (0.8, 0.7). Domains divided by the dotted lines are examples of subdomains used for
shape function evaluation.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Figure 5: Domain ([0, 1] × [0, 1]) and field nodes (40 × 40)

first consider a division of the problem domain. More specifically, we make rectangular subdomains
Ω1,Ω2, . . . by dividing a rectangular region including the problem domain Ω (See Fig. 2). Let a
support domain corresponding to a point of interest, x, be a rectangular region centred at the
centre of the corresponding subdomain. The size of the support domain, dx and dy, is determined
as given in (4), using user-defined parameters, αx and αy. An example of the support domain is
shown in Fig. 2. A subdomain is selected from the position of the point of interest x, and the
support domain is determined, not from the point of interest x, but from the centre of the selected
subdomain, Ωi.

The shape functions corresponding to the new support domain can be defined using the same
idea of the original RPIM as described in (5) and (6). We call these modified RPIM shape
functions. An example of the modified RPIM shape function, compared to the conventional RPIM
shape function, is shown in Fig. 3. Here, we assume that the problem domain, Ω, is [0, 1] × [0, 1],
and the nodes are distributed in Ω uniformly and Ω is divided into 5× 5 subdomains, Ω1, . . . ,Ω25,
as shown in Fig. 4. In addition, we used αx = αy = 4.0 as the parameters, determining the support
domain size.

c© 2009 European Society of Computational Methods in Sciences and Engineering (ESCMSE)

198 S. Nakata

20 30 40 50 60

10

-3

10

-2

10

-1

10

0

Number of division ndiv

R
el

at
iv

e
er

ro
r

e r

αx = αy = 4.0
αx = αy = 6.0
αx = αy = 8.0

20 30 40 50 60

0

1

2

3

4

5

6

Number of division ndiv

C
P

U
ti
m

e
[s
ec

]

αx = αy = 4.0
αx = αy = 6.0
αx = αy = 8.0

(a) Relative errors (b) CPU times for solving PDE [sec]

Figure 6: Relative errors and CPU times as a function of number of divisions

0

0.5

1

0

0.5

1

-0.06

-0.04

-0.02

0

xy

(a) Exact solution of eq. (9)

0

0.5

1

0

0.5

1

-0.06

-0.04

-0.02

0

xy

(b) Solution obtained by RPIM
(Relative error er = 3.09 ×
10−3)

0

0.5

1

0

0.5

1

-0.06

-0.04

-0.02

0

xy

(c) Solution obtained by modi-
fied RPIM (Relative error er =
2.51 × 10−3)

Figure 7: Exact solution and approximate solutions obtained by RPIM and modified RPIM

Some of our numerical experiments indicate that the modified RPIM shape function tends not
to differ significantly from the RPIM shape function, although its definition is different (Fig. 3).

The matrix G for evaluation of the modified RPIM shape functions is constant in the corre-
sponding subdomain, and thus, the matrix can be constructed in advance of the shape function
evaluation process. Let ns be the number of subdomains and G1, . . . , Gns

be matrices correspond-
ing to the subdomains, Ω1, . . . ,Ωns

: then, the matrices Gi are defined by (6), and the solution of
the linear system (5) can be obtained efficiently by the following procedure:

1. (Pre-processing) Divide Ω into subdomains Ω1, . . . ,Ωns
and construct corresponding matrices

G1, . . . , Gns
. Then, compute a decomposed form of every matrix Gi using decomposition such

as LU or block LDLT [8]. Here, we assume that all matrices are decomposed as Gi = LiUi.

2. (Construction of the linear system) Construct the matrix A and the right-hand side vector
[y1, · · · , yN]T of the linear system (2) using a Gaussian integration rule. In this step, the
value of the functions φi(x) and the corresponding gradients ∇φi(x) at each integration point
are required to compute (3) using the numerical integration. For an integration point, x, the
values φi(x) and ∇φi(x) are obtained as follows:

c© 2009 European Society of Computational Methods in Sciences and Engineering (ESCMSE)

An Efficient Scheme for Meshless Analysis 199

2 4 6 8 10 12

10

-4

10

-3

10

-2

10

-1

Expansion rate αx (= αy)

R
el

at
iv

e
er

ro
r

e r

RPIM
modified RPIM

2 4 6 8 10 12

0

5

10

15

20

25

30

35

40

45

Expansion rate αx (= αy)

C
P

U
ti
m

e
[s
ec

]

RPIM
modified RPIM

(a) Relative errors (b) CPU times [sec]

Figure 8: CPU times required for construction of linear system (2) and relative errors. The number
of subdomains ns is fixed to 40 × 40 for modified RPIM.

(a) Find a subdomain, Ωi, corresponding to x (See Fig. 2(b))

(b) Solve the linear systems (5), (7) and (8). The solutions of these linear systems can
be obtained with low computational cost using the decomposed form obtained in pre-
processing.

3 Numerical Examples

As a representative example, we consider the simple boundary value problem,
{

−∆u = − sin πx sin πy in Ω = [0, 1] × [0, 1],

u = 0 on Γ.
(9)

The exact solution is − 1

2π2 sinπx sin πy. We use 40 × 40 uniformly distributed field nodes in Ω
throughout this numerical test, as shown in Fig. 5. Thus, both nodal spacing variables, dcx and dcy,
are 1/39. The number of the background cells for numerical integration required in (3) is 30× 30,
and 3×3 Gaussian integration points are adopted at each background cell. All experiments in this
section were conducted with an Intel Pentium 4 processor 3.0 GHz, Linux operating system, g++
3.3.2 compiler and 1 GB memory.

The modified RPIM requires a new parameter, ns (number of subdomains). This parameter
plays an important role in improving the computational performance. The relative errors of ap-
proximate solutions and the CPU times required to obtain approximate solutions as a function of
number of divisions, ddiv, are shown in Fig. 6(a) and (b), respectively. Here, the number of divi-
sions, ddiv, means that the domain, Ω, is divided into ds = ddiv × ddiv subdomains. Note that the
CPU time results include pre-processing, i.e. construction of matrices Gi and their decompositions.

The definition of the relative error er is

er = ‖uexact(x) − unum(x)‖∞/‖uexact(x)‖∞,

where uexact(x) is the exact solution, and unum(x) is a numerical solution. From the results of the
relative errors, we see that ndiv = 40 gives a reasonable solution for αx = αy = 4.0, and the optimal

c© 2009 European Society of Computational Methods in Sciences and Engineering (ESCMSE)

200 S. Nakata

2 4 6 8 10 12

0

2

4

6

8

10

12

Expansion rate αx (= αy)

C
P

U
ti
m

e
[s
ec

]

RPIM
modified RPIM

Figure 9: CPU times for sampling the solution of PDE (50 × 50 sampling points)

value of ndiv is almost independent of the size of the support domain in this case. The results
shown in Fig. 6(b) illustrate that the CPU time increases as the number of divisions increases.
This is a natural sequel since the number of divisions determines the number of the matrices Gi.

These results indicate that 40× 40 subdomains provide a reliable solution with reasonable cost
in this case. Fig. 7 illustrates a comparison of the solutions obtained by RPIM and modified RPIM
for αx = αy = 8.0. No major difference exists between these two approximate solutions.

The other parameters are αx and αy, which determine the size of the support domain. Fig.
8(a) and (b) illustrates the relative errors and the CPU time required for the construction of the
linear system (2) as functions of αx.

Here, we used 40 × 40 subdomains which is selected according to the results in Fig. 6(a), we
applied LU for the decomposition of Gi for solving (2), and αx = αy. In the case of modified RPIM,
the CPU time shown in this figure includes pre-processing, construction of the linear system (2),
and the system solving process.

The results of the relative errors (Fig. 8(a)) show that the accuracy of the approximate solutions
obtained by modified RPIM decreases with an increase in the size of the support domain, and
behaves similarly to the conventional RPIM. The CPU time results shown in Fig. 8(b) indicate
that the numerical solutions of the modified RPIM can be obtained with lower computational
cost and the difference increases with αx. support domain. In the case of αx = αy = 8.0, for
example, the CPU time required for the construction of the linear system (2) is about 3.05 sec for
the modified RPIM—about 1/3 of the CPU time of the RPIM (9.22 sec).

Sampling of approximate solutions can be performed at any point in Ω by substituting sampling
points into (1). The sampling process is also accelerated in the modified RPIM because the shape
functions in (1) can be evaluated using the decompositions of Gi obtained in the pre-processing.
The CPU times required for sampling approximate solutions are shown in Fig. 9, where 50 × 50
grid points are used for the sampling. The CPU times in this figure does not include pre-processing
in the case of modified RPIM. For example, in the case of αx = αy = 8.0, the CPU time required
for the sampling using the modified RPIM is 0.19 sec—about 1/13 of the CPU time for the RPIM
(2.55 sec).

c© 2009 European Society of Computational Methods in Sciences and Engineering (ESCMSE)

An Efficient Scheme for Meshless Analysis 201

4 Conclusion

The present work has developed an efficient algorithm for meshfree method based on radial point
interpolation. In the method, the shape functions have been defined depending on subdomains
given as a division of a bounding rectangle of the problem domain. The new definition allows us
fast evaluation of the shape functions since the matrices for shape function evaluation and their
decomposed forms can be calculated in pre-processing in advance of the evaluation process. Our
numerical results indicate that the new definition of the shape functions provides reliable solutions
at low computational cost. In addition, the results indicate that the new definition contributes to
fast evaluation of approximate solutions.

Acknowledgement

This research was supported by Grant-in-Aid for Scientific Research from the Ministry of Educa-
tion, Culture, Sports, Science and Technology of Japan (No. 18760067) and Grant-in-Aid for the
21st Century COE “Center of Excellence for Disaster Mitigation of Urban Cultural Heritage” from
the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

[1] T. Belytschko, Y. Y. Lu and L. Gu, Element-Free Galerkin Methods, International Journal
for Numerical Methods in Engineering, Vol. 37, Issue 2, 229–256 (1994).

[2] P. Lancaster and K. Salkauskas, Surfaces Generated by Moving Least Squares Methods, Math-
ematics of Computation, Vol. 37, 141–158 (1981).

[3] G. R. Liu, Mesh free methods: moving beyond the finite element method, CRC Press, Boca
Raton (2002).

[4] J. G. Wang and G. R. Liu, A point interpolation meshless method based on radial basis
functions, International Journal for Numerical Methods in Engineering, Vol. 54, Issue 11,
1623–1648 (2002).

[5] K. M. Liew and X. L. Chen, Mesh-free radial point interpolation method for the buckling anal-
ysis of Mindlin plates subjected to in-plane point loads, International Journal for Numerical
Methods in Engineering, Vol. 60, Issue 11, 1861–1877 (2004).

[6] G. R. Liu, G. Y. Zhang, Y. T. Gu and Y. Y. Wang, A meshfree radial point interpolation
method (RPIM) for three-dimensional solids, Computational Mechanics, Vol. 36, No. 6, 421–
430 (2005).

[7] G. R. Liu and Y. T. Gu, An introduction to meshfree methods and their programming,
Springer, Dordrecht (2005).

[8] G. H. Golub and C. F. Van Loan, Matrix computations 3rd edition, The Johns Hopkins
University Press, Baltimore (1996).

c© 2009 European Society of Computational Methods in Sciences and Engineering (ESCMSE)

