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Abstract: In this paper we consider the problem of detecting, from a finite discrete set of

points, the curves across which a two-dimensional function is discontinuous. We propose

a strategy based on wavelets which allows to discriminate the edge points from points in

which the function has steep gradients or extrema.

c© 2009 European Society of Computational Methods in Sciences and Engineering

Keywords: Edge detection, discontinuities, wavelets, polyharmonic splines.

Mathematics Subject Classification: 65D15, 65R10, 65R30.

1 Introduction

Detection of edges (i.e jumps in a function) is of importance in many scientific applications including
signal and image processing, geology, geophysics, economics, medicine.
In two dimensions, given a finite and discrete set of data, the problem is to detect the curves
across which the function is discontinuous. The accurate detection of discontinuity curves, often
referred as fault lines or edges, is of basic importance to analyze and recover a certain phenomenon
correctly. In fact, usually, the most important information is carried by irregular structures. We
can think for instance to depth or subsoil faults which represent discontinuities caused by severe
movements of the earth crust. Their localization provides useful information on the occurrence
of oil reservoirs. Another important example is the analysis of medical images as the magnetic
resonance (MRI) where these lines may indicate the presence of some pathology.
The importance of this topic, is also evident from the literature where we find methods both for
the univariate case (see for instance [3],[11], [17], [25],[26]) and for the two dimensions ( see [1], [2],
[6], [9],[12], [13], [18], [23], [24]).
Some of them are based on the theory of wavelets which are the ideal tool to study localized changes
as jumps (edges) and sharp variations (steep gradients) of the underlying function in one dimension
as well as several dimensions. Moreover, it is well-known that it is possible to characterize the global
and local regularity of a signal by the decay of its wavelets coefficients across the scales.
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204 M. Rossini

The main problem of this approach and also of the other methods in the literature, is to be able
to distinguish between discontinuities and steep gradients that could be identified as jumps.
For this reason, we address here a detection strategy which, exploiting the properties of wavelets,
allows to detect the edges and to discriminate the edge points from those describing other smooth
features of the underlying function.
The method has low computational cost and leads to an efficient algorithm which is completely
automatic.
In particular, we will use the polyharmonic wavelets which have the attractive property of being
a non-separable basis and, even if they are not compactly supported, have the right localization
properties for this kind of problem.

Before starting, we formalize the problem. We suppose to have a finite set of functional data given
on a grid of a subset Ω of R

2,

zi = f(2−N i), i ∈ A :=
{
Z

2 ∩ 2NΩ
}
, (1)

where f(x) is discontinuous across an unknown curve g of Ω and smooth in any neighborhood of
Ω which does not intersect g. We call D0, the given data set

D0 = {(2−N i, zi), i ∈ A :=
{
Z

2 ∩ 2NΩ
}
}, (2)

and we assume Ω = [0, 1]2.
Our aim is to detect the points of the sample belonging or near the discontinuity curve g.

The paper is organized as follows. In Section 2 we give some basic notations, we recall the mul-
tiresolution setup and we give a characterization of discontinuities. In Section 3, we present the
detection method and we discuss the properties needed by the wavelets when used in edge detec-
tion and we suggest a possible choice: the polyharmonic ones. We recall their definition and we
state some useful results for our purposes. In Section 4, we show some numerical results which
validate the effectiveness of the method here presented and the good performances of polyharmonic
wavelets in this kind of problem.

2 Preliminaries

2.1 Basic notations and definitions

Throughout this paper, d is the dimension of the space.
Dαf denotes the derivative of f of total order α in R

d. ‖•‖ denotes the euclidean norm on R
d. ∗

denotes the convolution product: for all functions f and g in L1(Rd) and all vectors u in ℓ1(Zd)

f ∗ g :=

∫

Rd

f(x)g(• − x)dx, , u ∗ f :=
∑

j∈Zd

uj f(• − j).

We use standard notation for the inner product on L2(Rd), i.e.

(f, g) :=

∫

Rd

f(x) g(x)dx.

ˆ is the Fourier transform, for any function f in L1(Rd),

f̂(ω) :=

∫

Rd

f(x)e−iω xdx.
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We call RB(s), s ∈ R, the class of functions ϕ(x) satisfying

|ϕ(x)| ≤ C

(1 + ‖x‖)s
, x ∈ R

d

for some positive constant C, and B(s) the class of vectors v = {vk}k∈Zd such that

|vk| ≤
C

(1 + ‖k‖)s
, k ∈ Z

d.

For 0 < α < 1, we say that f is Hölder continuous of order α, or α-regular at x0 if |f(x)−f(x0)| ≤
C‖x− x0‖α.

2.2 Multiresolution and wavelet decomposition

We recall the multidimensional multiresolution setup (see for instance [20]).
Let φ ∈ L2(Rd) be a function which satisfies the stability condition

A
∑

k∈Zd

|λk|2 ≤

∥∥∥∥∥∥

∑

k∈Zd

λkφ(• − k)

∥∥∥∥∥∥

2

2

≤ B
∑

k∈Zd

|λk|2 , (3)

for any λ = {λk}k∈Zd ∈ l2(Zd). The constants A,B are such that 0 < A ≤ B.

We associate with φ an infinite sequence of closed subspaces {Vn}n∈Z
of L2(Rd) defined as Vn :={∑

k∈Zd λkφn,k(x) : λ ∈ l2(Zd)
}
, where φn,k(x) := 2nd/2φ(2nx− k).

We say that φ admits multiresolution, or that the sequence {Vn}n∈Z
forms a multiresolution

analysis (MRA) of L2(Rd), if, in addition to (3), we have

Vn ⊆ Vn+1, n ∈ Z, (∪n∈ZVn) = L2(Rd), ∩n∈Z Vn = ∅.

We also say that n is the scale or the resolution level and that φ is the scaling function.
Let Wn be the orthogonal complement of Vn in Vn+1, that is Vn+1 = Vn ⊕Wn, E = [0, 1]d ∩ Z

d

and E′ = E \ {0}d.
It is known that there exist 2d − 1 wavelets ψe, e ∈ E′ that span Wn. The sequence {Wn}n∈Z

provides an orthogonal decomposition of L2(Rd)

L2(Rd) =
⊕

j∈Z

Wj .

This means that any f ∈ L2(Rd) can be decomposed into an orthogonal series

f =
∑

j∈Z

Dj , Dj ∈Wj ,

with
Dj =

∑

k∈Zd

∑

e∈E′

cej,kψ
e
j,k(x), ψe

j,k := 2jd/2ψe(2jx− k), cej,k = (f, ψ̃e
j,k),

where ψ̃e is the dual function of ψe. Equivalently, f can be decomposed in two parts

f = PVn
f +

∑

j≥n

Dj .

The smooth part PVn
f is the projection of f on the resolution space Vn, and the remaining part

is formed by the details we need to complete it. In the detail coefficients cej,k are contained the
information on the main features of the function (discontinuities, steep gradients, extrema).
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2.3 Characterization of jumps

It is known that it is possible to characterize the local regularity of order α of a signal by the
decay of its wavelets coefficients across the scales n (see [7], [10], [19] ). These known results can
be resumed in the following proposition.

Proposition 1 Let ψe(x) ∈ C1(Rd). Assume that ψe(x) and D1ψe(x) belong to RB(d+ 2). If a

function f is Hölder continuous of order α at x0, 0 < α < 1, then

|cen,k| = |
∫

Rd

f(x)ψ̃e
n,k(x)dx| < C1(1 + ‖x0 − 2−nk‖α)2−n(d/2+α) (4)

where n > 0, k ∈ Z
d, and e ∈ E′. Conversely, if for some ǫ > 0, and some 0 < α < 1

max
k∈I

|cen,k| = O(2−n(d/2+α)), I = {Zd ∩ 2−n[x0 − ǫ, x0 + ǫ]d}, (5)

then f is Hölder continuous of order α at x0.

This proposition says us that the coefficient moduli in the neighborhoods of the points in which
the function is α-regular, 0 < α < 1, goes to zero as the scale n increases. Then, in the points in
which the function is discontinuous, we expect to have coefficients with modulus that does not got
to zero as n→ +∞.
In fact we have proved the following result. From now on we consider d = 2.

Proposition 2 Let the assumptions of Proposition 1 hold, and consider a function f(x) ∈ L2(R2)
which is discontinuous across a curve g of R

2 and smooth in any neighborhood which does not

intersect g. For any k ∈ Z
2 such that k/2n belongs to a neighborhood of a discontinuity point, let

x0 ∈ g be its nearest point. Then, the corresponding wavelet coefficient is such that

cen,k = Kn +O(2−n), (6)

where Kn is a non zero constant tending to the jump size at x0 as n 7→ ∞.

Proof: Consider the kth-wavelet coefficient cen,k, e ∈ E′ and let Sn a circle centered at k/2n with

radius 2−n. It is easy to show that

cen,k = (f, ψ̃e
n,k) =

∫

Sn

f(x)ψ̃e
n,k(x)dx+O(2−n). (7)

Now, we assume that Sn intersects the discontinuity curve which divides Sn in two sets S1
n con-

taining k/2n and S2
n. Then

cen,k =

∫

S1
n

f(x)ψ̃e
n,k(x)dx+

∫

S2
n

f(x)ψ̃e
n,k(x)dx+O(2−n). (8)

Since f(x) is smooth in S1
n and in S2

n, we can write

f(x) = f(k/2n) +O(2−n), x ∈ S1
n

f(x) = f(k̄/2n) +O(2−n), x ∈ S2
n, (9)

where k̄/2n is the nearest point of 2−n
Z

2 ∩ S2
n to k/2n. Now

∫

S2
n

f(x)ψ̃e
n,k(x) =

∫

Sn

f(x)ψ̃e
n,k(x)dx−

∫

S1
n

f(x)ψ̃e
n,k(x)dx
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= (f, ψ̃e
n,k) −

∫

R2\Sn

f(x)ψ̃e
n,k(x)dx−

∫

S1
n

f(x)ψ̃e
n,k(x)dx

= −
∫

R2\Sn

f(x)ψ̃e
n,k(x)dx−

∫

S1
n

f(x)ψ̃e
n,k(x)dx. (10)

From (7), we have that
∫

R2\Sn

f(x)ψ̃e
n,k(x)dx = O(2−n), and then

∫

S2
n

f(x)ψ̃e
n,k(x)dx = −

∫

S1
n

f(x)ψ̃e
n,k(x)dx+O(2−n). (11)

Using (9) and (11), (8) becomes

cen,k =
(
f(k/2n) − f(k̄/2n)

) ∫

S1
n

ψ̃e
n,k(x)dx+O(2−n)

= C̄
(
f(k/2n) − f(k̄/2n)

)
+O(2−n), (12)

where C̄ is a constant not depending on n and we get the proof. �

3 The Detection Method

These theoretical results suggest a characterization of jumps. It is clear that the coefficients with
bigger modulus are relevant to the important features in the signal (as the discontinuities). So the
idea is to look for the ”maxima” of the coefficient moduli. For doing this we need to define what
these maxima are and how to deal with the three sets {cen,k}k∈Z2 , e ∈ E′ = {(1, 0), (0, 1), (1, 1)}.
Each of them analyzes the function in a particular direction: the horizontal, the vertical and the
positive diagonal.
We may interpret them as follows. At each point k/2n, k ∈ Z

2 we associate a vector ve
n,k whose

direction is given by e ∈ E′ and whose modulus is |cen,k|.
We put together the information given by them, associating to each grid point only one vector
Vn,k defined as

∑
e∈E′ ve

n,k.
We consider its modulus

|Vn,k| =

√

(c
(0,1)
n,k +

√
2

2
c
(1,1)
n,k )2 + (c

(1,0)
n,k +

√
2

2
c
(1,1)
n,k )2, (13)

and the angle it forms with the horizontal

ang(Vn,k) = atan[
c
(0,1)
n,k +

√
2

2 c
(1,1)
n,k

c
(1,0)
n,k +

√
2

2 c
(1,1)
n,k

]. (14)

We define wavelet modulus maxima, the points k̄/2n in which (13) is maximum in the direction
given by (14).
It is trivial to see that also |Vn,k| satisfies Proposition 1 and Proposition 2.
From Proposition 1, we know that in a neighborhood of an α-regular point of f , |Vn,k| goes to
zero as 2−n(α+1) when n→ +∞. Conversely, if in a neighborhood of x0 all the |Vn,k| converge to
zero as 2−n(α+1) for n→ +∞, then f is α-regular at x0.
On the other side, Proposition 2, says that in a neighborhood of a point x0 belonging to the
discontinuity curve g, there is at least a point k/2n such that |Vn,k| does not converge to zero but
to a constant proportional to the jump size at x0. Moreover, if in a neighborhood of a point x0
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Figure 1: On the left the signal: it is discontinuous across the line y = 0.7. On the right the values
of (13) computed starting from 27 × 27 gridded data

some |Vn,k| do not converge to zero but to a constant K 6= 0, by Proposition 1, follows that the
function can not be α-regular for some α and then we have a discontinuity at x0.
Then, as already said, we can conclude that the more significant information is given by the
wavelet modulus maxima and their asymptotic behavior tell us if they correspond or not to the
discontinuities of the function.
In addition, as direct consequence of Proposition 1 and 2, we can prove also the following

Proposition 3 Under the assumptions of Proposition 1 and 2, we have that a function f(x) is

discontinuous at x0 if and only if in a neighborhood of x0 we have, for some k,

|Vn,k|
|Vn+l,k|

→ 1 as n→ +∞, l ∈ N (15)

We have now to see how to use the above results in practice, that is when we have only a gridded
sample D0 with size 2N × 2N (see (1)).
First, we need to map the discrete signal D0 onto the resolution space VN by some operator which
approximates the projection PNf of the function f on VN . One effective method is to construct
an element interpolating the data, but, often, because of computational efforts in computing the
interpolating coefficients, people use the quasi interpolant operator.
When we have approximated the signal in VN , we decompose it, we compute the wavelet coefficients
and the values (13). Then, we find the wavelet modulus maxima at the present resolution level.
We know that in this set there are points corresponding to discontinuities. The problem, as shown
in fig. 1, is that in this set we find also maxima corresponding to ”smooth behavior” of the
underlying function, as steep gradients or extrema, and at the moment, we are not able to say
which are the maxima actually associated with the discontinuities.
For this reason we need to study a strategy to discriminate the edge maxima from the others.
Keeping in mind the theoretical results stated above, one possibility could be: to start from the
given level N , to decompose the signal up to a prefixed level s < N and to study the evolution of
the maxima across the levels j, j = s, . . . , N .
The disadvantage of this approach is that we smooth more and more the original signal and this
means to loose the important features of the underlying function as the discontinuities we are
looking for, especially if we have jumps of small sizes.

For this reason we follow a different approach.
We fix an integer l such that 1 ≤ l ≤ [N/2]. From the given data set D0, we extract l coarser
subsets of gridded data Dj with step size 2−(N−j), j = 1, . . . , l.
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For each set Dl, . . . ,D1,D0, we perform only one wavelet decomposition. In this way, we con-
struct the wavelet coefficients starting from sets containing the original information on the signal
irregularities.
Then, for j = l, . . . , 0 we compute

1. the discrete functions

Wj = { k

2N−j−1
, |VN−j−1,k|, k ∈ Z

2 ∩ 2N−j−1[0, 1]2},

2. the wavelet modulus maxima sets

WMMj =
{(
κ/2N−j−1, |VN−j−1,k|

)
, κ ∈ Kj ⊂ Z

2 ∩ 2N−j−1[0, 1]2
}
,

and we look how they behave as j goes from l to 0: For the maxima corresponding to regularity
points, we have a strong reduction of the moduli |VN−j−1,k| while, according to Proposition 3,
for the maxima corresponding to discontinuity points, the moduli |VN−j−1,κ| remain of the same
order for j = l, . . . , 0.
So we have the following procedure for the detection.
We consider the set WMM0. For each κ ∈ K0, we find in each set WMMj , j = 1, . . . , l, the
nearest point to κ/2N−1

(
κ̄/2N−j−1, |VN−j−1,κ̄|

)
∈WMMj , j = 1, . . . , l

and we compute the ratios

Rj =
|VN−1,κ|
|VN−j−1,κ̄|

, j = 1, . . . , l

If, for j = 1, . . . , l
0.5 ≤ Rj ≤ 1.5,

(that is to say the moduli remain of the same order) we take κ/2N−1 as discontinuity point,
otherwise we reject it.

Remark: Usually it suffices to fix l = 2 or l = 3 and once fixed l and chosen the wavelet family,
the algorithm is completely automatic.

We want now to discuss which wavelet is convenient to choose.
According to the assumptions of Proposition 1, we have to choose a wavelet with a good decay
that means that its support can be considered numerically compact and then it is not so important
to have compactly supported basis. Moreover it is very important that the wavelet has the right
localization properties. Too localized wavelets may need larger sample to discriminate the edges
from other smooth behaviors, and this, of course, causes a growth of the computational cost. On
the other hand, wavelets with the right localization, are able to detect the discontinuities also from
samples with lower dimension an then with a saving of the cost.
Another desirable property is to have non separable wavelets. This means that each set of coeffi-
cients analyzes the function in a particular direction: the horizontal, the vertical and the positive
diagonal, and so there aren’t only two favorite directions, as in the tensor product case in which
we have the horizontal, the vertical directions, and we create a diagonal cross term which hasn’t
a straightforward interpretation. In our case each wavelet is actually associated to a privileged
direction.
A class of wavelets satisfying to all the aforesaid requirements is the polyharmonic one. Then in
the next section we recall their definition, their main properties and we prove some results which
validate this choice from a theoretical point of view. Finally, we show some numerical results which
confirm their goodness also in practice.
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3.1 The Polyharmonic Wavelets

Polyharmonic splines can be defined in any dimension d through an interpolation problem (see
[8]). The m-harmonic spline interpolating f on a set X is the unique solution of minimizing the
semi-norm 


∫

Rd

∑

α∈Nd,|α|=m

m!

α!

(
∂αu

∂xα
(x)

)2

dx




1/2

among all the functions u in the Sobolev space Hm(Rd) interpolating f on X.

Let ∆1 be the discrete version of the Laplace operator ∆, defined by ∆1f =
∑d

j=1(f(• − ej) −
2f + f(• + ej)), (ej)k := δj,k, 1 ≤ j, k ≤ d, and ∆m := mth-iterate of ∆.
In the case of cardinal mesh, X = Z

d, Rabut [22] has proved that the m-harmonic B-spline, m ∈ N,
m > d/2, with knots in Z

d, is φm := ∆m
1 vm, where vm is a fundamental solution of ∆m,

vm =





1

22mπd/2

(−1)1−d/2

(m− d/2)! Γ(m)
‖•‖2m−d

ln ‖•‖2
, d even

1

22mπd/2

(−1)mΓ(
d

2
−m)

Γ(m)
‖•‖2m−d

, d odd.

8/3

The polyharmonic B-spline φm is a valid scaling function for constructing a MRA {Vn}n∈Z of
L2(Rd) (see [16], [21]) and the (pre-)wavelets are defined by means of the Lagrangian polyharmonic
spline. Namely, let L2m denote the Lagrangean 2m-harmonic spline, i.e. the polyharmonic spline
in H2m(Rd) interpolating the data (j, δj)j∈Zd , we define

ψm := (∆mL2m) (2•) , ψe
m := ψm

(
• +

e

2

)
, e ∈ E′. (16)

The functions ψm and ψe
m, e ∈ E′ are m-harmonic splines with knots in Z

d/2. For any n ∈ Z and
e ∈ E′, let W e

n denote the space spanned by the family {ψe
m(2nx− j)}j∈Zd and let Wn be the one

spanned by {ψe
m(2n • −j)}j∈Zd,e∈E′ . Hence, Wn = ⊎e′∈E′W e′

n , n ∈ Z, and the sequence {Wn}n∈Z

provides an orthogonal decomposition of L2(Rd) (see [4] for more details). Then the functions of
the family {ψe

m(2nx− k)}e∈E′,k∈Zd are orthogonal on different scales, while the orthogonality fails
if we take functions of Wn, i.e. on the same level n.
The very important fact is that we can use these pre-wavelets in the applications, in fact we find
in [4] an explicit construction of the MRA, and in [5] an efficient algorithm for performing the
wavelet decomposition and recomposition of a discrete signal.

3.1.1 Main Properties

The polyharmonic splines have many interesting properties. For our purposes, we recall here that
φm and ψe

m belong to C2m−d−1(Rd) and that their decay is [4]

|φm(x)| ≤ C

(1 + ‖x‖)d+2
, |ψe

m(x)| ≤ C

(1 + ‖x‖)d+2
, e ∈ E. (17)

Moreover, in the following proposition, we have proved that also Dlφm(x) and Dlψe
m(x), e ∈ E,

|l| ≤ d+ 1, decay as (17).

Proposition 4 Let l ∈ N
d such that |l| ≤ d + 1. Then, Dlφm(x) ∈ RC(d + 2) and Dlψe

m(x) ∈
RC(d+ 2), e ∈ E, provided that 2m− d− |l| > 0.
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Proof. First, we consider Dlφm(x) with |l| = 1. In this case, for the existence of the derivatives,
it is necessary that 2m− d− 1 > 0.
For simplicity, we set gj(x) = ∂φm(x)/∂xj and we consider its fourier transform ĝj(ω) = −iωj φ̂m(ω).

It is known that Dαφ̂m(ω), |α| ≤ d + 1, is locally summable. Since Dαφ̂m(ω) = O(‖ω‖−2m), as

‖ω‖ → ∞, we have that |Dαφ̂m(ω)| ∈ L1(Rd) (see [4]).
Now, let us consider Dαĝj(ω), |α| ≤ d + 1. Its expression is a linear combination of the terms

φ̂m(ω) and ωjD
αφ̂m(ω). Then Dαĝj(ω) is locally summable and when ‖ω‖ → ∞, we have that

Dαĝj(ω) = O(‖ω‖−2m+1). Remembering that 2m − 1 > d, we conclude that also |Dαĝj(ω)| ∈
L1(Rd), |α| ≤ d+ 1.
Then, it follows that gj(x) = o(‖x‖−d−1) as ‖x‖ → ∞. Since gj(x) admits a series expansion out
of a certain neighborhood of the origin, we get gj(x) = O(‖x‖−d−2) as ‖x‖ → ∞.
We may iterate this procedure to the successive derivatives Dlφm(x) with |l| > 1. In this case we
need 2m− d− |l| > 0 and going on as in the previous case, we get the proof.
We turn now to Dlψe

m(x), e ∈ E, |l| ≤ d + 1. Since the wavelet ψm ∈ W0 is in V1, and since V1

is generated by {φm(2 • −j)}k∈Zd , there exists a unique vector p = (pj)j∈Z ∈ l2(Zd) such that
ψm = (p ∗ φm)(2•), and it has been proved in [4], that p ∈ B(d+ 2).
By (16) it follows that ψe

m = (p∗φm)(2•+e), e ∈ E. Then Dlψe
m(x) = 2(p∗Dlφm)(2•+e), e ∈ E,

and since the convolution between a vector of B(s) and a function of RB(s) is again a function of
RB(s) (see [4]), we get the proof. �

In addition we have proved that

Proposition 5 ψe
m, e ∈ E and their duals ψ̃e

m have 2m− 1 vanishing moments, that is

∫

Rd

xl1
1 . . . x

ld
d ψ

e
m(x)dx = 0,

∫

Rd

xl1
1 . . . x

ld
d ψ̃

e
m(x)dx = 0, e ∈ E, (18)

for all l ∈ N
d such that |l| = l1 + · · · + ld ≤ 2m− 1.

Proof. Let us consider the Fourier transform of ψe
m(x), e ∈ E′. By the wavelet definition (16),

we have
ψ̂e

m(ω) = exp (−ieω)ψ̂m(ω), (19)

and
ψ̂m(ω) = 2−d‖ω‖2mL̂2m(ω/2). (20)

The polyharmonic cardinal spline Lm(x) decay exponentially (see [15]) and then its Fourier trans-
form

L̂m(ω) =
‖ω‖−2m

∑
k∈Zd ‖ω − 2kπ‖−2m

(21)

is C∞. So ψ̂m(ω) is C∞ too.

Moreover it is easy to verify that ψ̂m(ω) = O(‖ω‖2m) as ω → 0. In fact, by definition

ψ̂m(ω) = 2−d‖ω‖2m ‖ω/2‖−4m

∑
k∈Zd ‖ω/2 − 2kπ‖−4m

.

Since we have ∑

k∈Zd

‖ω/2 − 2kπ‖−4m > ‖w/2‖−4m,

we get
ψ̂m(ω) ≤ K‖ω‖2m.
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Figure 2: Left: Test function f1. Right: the results of the detection, the points are the wavelet
modulus maxima and the circle the wavelet modulus maxima detected as discontinuity points

ThenDlψ̂m(ω)|ω=0 = 0 for any l such that |l| ≤ 2m−1. BeingDlψ̂m(ω)|ω=0 = (−i)|l|
∫

Rd x
l1
1 . . . x

ld
d ψm(x)dx,

we conclude that ψm(x) and ψe
m(x) have 2m− 1 vanishing moments.

Let now consider the dual wavelets ψ̃e
m(x). It is known that

̂̃
ψ

e

m(ω) =
ψ̂e

m(ω)
∑

k∈Zd |ψ̂e
m(ω + 2kπ)|2

. (22)

Then
̂̃
ψ

e

m(ω) is C∞, and since for e ∈ E, ψe
m(x) is a Riesz basis with constants 0 < Ae ≤ Be, we

have

ψ̂e
m(ω)

Be
≤ ̂̃
ψ

e

m(ω) ≤ ψ̂e
m(ω)

Ae
. (23)

Then also
̂̃
ψ

e

m(ω)) = O(‖ω‖2m) as ω → 0 and with the same arguments used for ψe
m(x) we get the

proof. �

4 Numerical Results

In this section we present some numerical experiments that validate the efficacy of the method
presented in the paper and the good performance of polyharmonic wavelets in edge detection.

We have chosen the polyharmonic splines of order m = 2 and used the algorithm proposed in [5]
for performing the decomposition of the given signal.

Example 1. We start from the function

f1(x, y) =

{
tanh (50y − 60x) − 0.8, 0 ≤ y < 0.7, x ∈ [0, 1],
0, y ≥ 0.7, x ∈ [0, 1],

which has steep gradients along the line y = 6/5x and is discontinuous across the line y = 0.7. We
have considered a gridded sample of size 28 × 28. In Fig. 2, we can see on the left the function
f1 and on the right the results of the detection algorithm: the points are the wavelet modulus
maxima and the circle the wavelet modulus maxima detected as discontinuity points.

c© 2009 European Society of Computational Methods in Sciences and Engineering (ESCMSE)



Detecting Discontinuities 213

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

0

0.2

0.4

0.6

0.8

1

−0.5

0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3: Left: Test function f2. Right: the results of the detection, the points are the wavelet
modulus maxima and the circle the wavelet modulus maxima detected as discontinuity points

Example 2. Here we have considered the well known Franke’s function fr(x, y) and the function
f2(x, y) defined as

f2(x, y) =

{
fr(x, y), −0.2 sin(5x) + 0.5 < y ≤ 1, x ∈ [0, 1],
fr(x, y) − 0.4, 0 ≤ y ≤ −0.2 sin (5x) + 0.5, x ∈ [0, 1],

which has three extrema and is discontinuous across the curve

y = −0.2 sin (5x) + 0.5.

We have considered a gridded sample of size 28 × 28. We can see in Fig. 3 that in the wavelet
modulus maxima set we find also the extrema of the underlying function which are rejected by the
detection algorithm.

Example 3. Finally, we want to show a practical example, the phantom function [2], used as
benchmark test in magnetic resonance imaging. The larger ellipse represent the brain and it
contains several small ellipses representing features in the brain. The domain of this function is
Ω = [−1, 1]2 and we have considered a grid of size 29 × 29. In Fig. 4, we can see the phantom
function and on the right the results of the detection algorithm.

5 Concluding Remarks

In this paper we have considered the problem of detecting, from a finite discrete set of points,
the curves across which a two-dimensional function is discontinuous. We have proposed a strategy
based on wavelets which allows to discriminate the edge points from points in which the function
has steep gradients or extrema. The method leads to an efficient algorithm which is completely
automatic.

We have also addressed which wavelet is convenient to choose for this kind of problem. In particular
we have considered the polyharmonic wavelets which have the attractive property of being a non-
separable basis and, even if they are not compactly supported, have the right localization properties
for this kind of problem. The numerical experiments have shown that this is a good choice also in
practice.
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Figure 4: Left: The phantom function. Right: the results of the detection, the points are the
wavelet modulus maxima detected as discontinuity points
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[10] S. Jaffard, Exposants de Hölder en des points donnes et coefficients d’ondeletts, C. R. Acad.

Sci. Paeis 308 Series I 79-81(1989).

[11] D. Lee, Coping with Discontinuities in Computer Vision: Their Detection, Classification
and Measurement, IEEE Transaction on Pattern Analysis and Machine Intelligence 12 321-
344(1990).

c© 2009 European Society of Computational Methods in Sciences and Engineering (ESCMSE)



Detecting Discontinuities 215
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