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Abstract: We propose a novel technique for seismic waveform tomography on continental

scales. This is based on the fully numerical simulation of wave propagation in complex

Earth models, the inversion of complete waveforms and the quantification of the waveform

discrepancies through a specially designed phase misfit. The numerical solution of the

equations of motion allows us to overcome the limitations of ray theory and of finite normal

mode summations. Thus, we can expect the tomographic models to be more realistic and

physically consistent. Moreover, inverting entire waveforms reduces the non-uniqueness

of the tomographic problem. Following the theoretical descriptions of the forward and

inverse problem solutions, we present preliminary results for the upper mantle structure in

the Australasian region.
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1 Introduction

Seismic tomography is a powerful tool that allows us to infer the Earth’s structure from observa-
tions of seismic waves at the surface. It provides information about the current dynamics [1] and
the long-term evolution of our planet [2]. The physical basis of seismic tomography on continental
and global scales are elastic waves that are excited by natural earthquakes. The waves propagate
through the Earth and are recorded in the form of seismograms that may be used for tomography.
Seismic tomography differs from technical tomographies on a laboratory scale in several decisive
points: (1) Sufficiently large natural earthquakes as sources of seismic waves are poorly distributed.
They only occur along the few tectonically active zones of the Earth. (2) The earthquake mech-
anism, i.e. the details of the source, are often poorly constrained. Even the magnitude of an
earthquake can often not be determined with sufficient accuracy. (3) Receivers can only be in-
stalled and maintained in the relatively small accessible and secure regions of the Earth. This
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mostly excludes the deep ocean floor, high mountains, deserts, polar regions and politically unsta-
ble countries. Thus, large regions of the Earth, especially in the southern hemisphere, are rather
poorly illuminated by seismic waves. (4) The seismic wavefield is highly complex, consisting of
compressional waves, shear waves and different types of interface and surface waves that may con-
vert to each other. This complexity increases due to the presence of strong lateral heterogeneities,
topography and oceans of varying depth. (5) Seismic waveforms, and their amplitudes in particu-
lar, may depend highly non-linearly on the structure of the Earth, therefore rendering a linearised
inversion difficult. As a result of these complications, seismic tomography is a non-linear and
ill-posed inverse problem that bears little resemblance with laboratory ray tomography based on
variants of the central-slice theorem [3][4].
To date seismic tomography has mostly been based on simplified forward problems: either ray the-
ory [5][6] or truncated normal mode summations [7]. The corresponding inversion techniques are
computationally efficient and reliable. Nevertheless, there is a high potential for further improve-
ments: (1) To reduce the non-uniqueness of the seismic tomographic problem, more waveform
information needs to be exploited. This requires that suitable measures of waveform misfit be
designed. While extracting as much information as possible from the seismograms, the misfits
must respect the particularities and problems of the seismic tomographic problem in order to be
successful. (2) The maximum amount of usable waveform information can be exploited only when
the solution of the forward problem is sufficiently accurate. Thus, fully numerical methods need to
be used to simulate the propagation of elastic waves through a highly heterogeneous Earth model.

In this paper we describe a new waveform inversion method that is applicable on continental scales.
We propose to solve the forward problem, i.e. the elastic wave equation, using a spectral-element
discretisation that maintains the natural spherical coordinate system. To quantify the discrepan-
cies between the observed seismograms and the seismograms computed for a reference Earth model
we introduce a phase misfit that extracts a large amount of waveform information while being both
reliably measurable and quasi-linearly related to Earth structure. We apply our new approach to
the imaging of upper mantle structure under the Australian continent.

The principal advancements of our method are the fully numerical computation of the seismic
wavefield for continental-scale tomography, the use of full waveforms and the actual applicability
to real data.

This paper is outlined as follows: We start with a review of the equations that govern the propaga-
tion of seismic waves in the Earth. Special attention is given to the implementations of anisotropy
and visco-elastic dissipation. Section 3 deals with the numerical solution of the equations of mo-
tion using a spectral-element discretisation in a spherical section. The setup of a seismic waveform
tomography as a discrete optimisation problem is the topic of section 4. We elaborate on the
design of a suitable waveform misfit and the computation of its gradient with respect to the model
parameters via the adjoint method. Finally, we illustrate the application of our new method with
preliminary tomographic images of the Australian upper mantle.

2 Equations governing the propagation of seismic waves

The propagation of seismic waves through a model Earth G ⊂ R
3 can be described by the linearised

momentum balance equation that relates the displacement field u(x, t) to the stress tensor σ(x, t),
the external force density f(x, t) and the mass density distribution in the Earth, ρ(x) [8][9]:

ρ(x) ü(x, t) −∇ · σ(x, t) = f(x, t) , x ∈ G , t ∈ [t0, t1] . (1)
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Simulation and inversion of seismic wave propagation 13

At the surface ∂G of the Earth model the normal components of the stress tensor σ vanish, i.e.,
the Neumann condition

σ · n|x∈∂G = 0 (2)

is satisfied. The symbol n in equation (2) denotes the outward-pointing unit normal. Both the
displacement field u and the velocity field v = u̇ are required to be zero prior to the time t = t0
when the external force f starts to act:

u|t<t0 = v|t<t0 = 0 . (3)

To obtain a complete set of equations, the stress tensor needs to be related to the displacement
field. We assume a visco-elastic rheology where the current stress tensor σ depends linearly on the
time-history of the strain tensor ǫ = 1

2 (∇u + ∇uT ). In symbols:

σ(x, t) =

∫ t

t=t0

Ċ(x, t − t′) : ǫ(x, t′) dt′ . (4)

The fourth-order tensor C is the elastic tensor. In the case of a perfectly elastic medium it takes
the form C(x, t) = C(x)H(t), where H is the Heaviside function. We then have σ = C(x) : ǫ(x, t).
The elastic tensor components satisfy the symmetry relations Cijkl = Cklij = Cjikl. Moreover, C

is causal, i.e. C(t)|t<t0 = 0. In the following paragraphs on anisotropy and visco-elastic dissipation
we will specify the components of C and their time dependence.

Anisotropy is the dependence of the elastic tensor on the orientation of the coordinate system. It
plays a major role in the Earth where it translates to the dependence of elastic wave speeds on the
propagation direction and the polarisation vector [10]. We decided to implement anisotropy with
radial symmetry axis that is particulary pronounced in the crust and upper mantle of the Earth
[11]. For such a medium, there are 5 independent elastic tensor components that are different from
zero. Due to the symmetry of the elastic tensor they can be summarised in two 3× 3 schemes [10]:





C(rrrr) C(rrφφ) C(rrθθ)

C(φφrr) C(φφφφ) C(φφθθ)

C(θθrr) C(θθφφ) C(θθθθ)



 =





λ + 2µ λ + C λ + C
λ + C λ + 2µ + A λ + A
λ + C λ + A λ + 2µ + A



 (5a)





C(φθφθ) C(φθrθ) C(φθrφ)

C(rθφθ) C(rθrθ) C(rθrφ)

C(rφφθ) C(rφrθ) C(rφrφ)



 =





µ 0 0
0 µ + B 0
0 0 µ + B



 (5b)

All components of C that do not appear in equation (5) are equal to zero. In the purely isotropic
case the elastic parameters A,B and C vanish and the elastic tensor components take the simple
form Cijkl = λδijδkl + µδikδjl + µδilδjk, where λ and µ are the Lamé parameters.

Visco-elastic dissipation is responsible for the loss of elastic energy during the propagation of
seismic waves and it is expressed mathematically through the time dependence of the elastic tensor
C. To specify this time dependence, we roughly follow [12]: Let σ,C and ǫ be representatives of
some particular components of σ,C and ǫ, respectively. Then a scalar version of the constitutive
relation (4) is given by

σ̇(t) =

∫ t

t′=t0

Ċ(t − t′)ǫ̇(t′) dt′ . (6)

The spatial dependence has been omitted in the interest of clarity. We choose C to be of the form

C(t) = Cr

[

1 +
τ

N

N
∑

p=1

e−t/τσp

]

H(t) , (7)
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where H denotes the Heaviside function. The dimensionless parameter τ , the relaxed modulus Cr

and the stress relaxation times τσp with p = 1, ..., N , are material-specific properties. Differentiat-
ing (7) with respect to t and introducing the result into equation (6) yields

σ̇(t) = Cr(1 + τ) ǫ̇(t) + Cr

N
∑

p=1

Mp , (8)

where the memory variables Mp are defined by

Mp := − τ

Nτσp

∫ t

t0

e−(t−t′)/τσp H(t − t′) ǫ̇(t′) dt′ . (9)

The differentiation of (9) with respect to time yields a set of first-order differential equations for
the memory variables:

Ṁp = − τ

Nτσp
ǫ̇ − 1

τσp
Mp . (10)

Hence, anelasticity can be modelled by solving N ordinary differential equations for the memory
variables Mp simultaneously with the momentum equation and a slightly modified stress-strain
relation. Generalising equations (8) and (10) to the three-dimensional elastic case results in a set
of ODEs that can be written in matrix form:

σ̇ = C1 : ǫ̇ + C2 :

N
∑

p=1

Mp , Ṁp = Tp1 : ǫ + Tp2 : Mp . (11)

The components of the matrices C1,C2,Tp1 and Tp2 are

C
(ijkl)
1 = C(ijkl)

r (1 + τ (kl)) , C
(ijkl)
2 = C(ijkl)

r , T
(ijkl)
p1 = − τ (ij)

Nτ
(ij)
σp

δikδjl , T
(ijkl)
p2 = −δijδkl

τ
(ij)
σp

. (12)

In most practical applications the time dependence of the elastic parameters A,B and C is ne-
glected. The coupled system of equations (1) and (11) constitutes the elastic wave equation in a
medium with polarisation anisotropy and visco-elastic dissipation. It describes the propagation of
seismic waves in an Earth model that is characterised by the distributions of mass density, elastic
moduli and a set of relaxation times.
Note that the representations of the constitutive relation in terms of a convolution (equation 4) or
in terms of ODEs (equation 11) are fully equivalent. However, the ODE version is easier to solve
numerically.

3 Spectral-element discretisation of the governing equations

One of the principal advantages of our proposed waveform inversion technique is that the complete
wavefield in a heterogeneous Earth model is simulated with high accuracy. This yields tomographic
images that are physically more consistent than images that are based on approximations such as
ray theory, for example. The equations of motion, summarised in the previous section, can not be
solved analytically or semi-analytically in Earth models with realistic lateral heterogeneities. We
therefore rely on numerical solutions that we describe and assess in the following paragraphs.

c© 2009 European Society of Computational Methods in Sciences and Engineering (ESCMSE)
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3.1 Spatial discretisation

In the course of the past two decades several methods have been developed that allow us to solve
the elastic wave equation in three-dimensional, heterogeneous media. They range from classical
finite-difference schemes [13] to discontinuous Galerkin methods [14]. For wave propagation on
global and continental scales the spectral-element method (SEM) has proven to be the optimal
compromise between efficiency and accuracy [15][16].
The centrepiece of the SEM is the decomposition of the computational domain G − in our case
a spherical section of the Earth − into Ne non-overlapping elements Ge, with e = 1, ..., Ne. Each
element is mapped onto the reference cube Λ = [−1, 1]3 via an invertible transformation χe :
Ge → Λ. Inside the reference cube each displacement field component u(p) is approximated by a
polynomial expansion, using Lagrange polynomials of degree N , denoted by ℓi, with i = 1, ..., N+1 :

u(p)(χ, t) ≈
N+1
∑

ijk=1

ū
(p)
ijk(t) ℓi(ξ)ℓj(ζ)ℓk(η) , χ = (ξ, ζ, η)T ∈ Λ . (13)

The collocation points of the Lagrange polynomials are the Gauss-Lobatto-Legendre (GLL) points,
and the polynomial degree, N , is mostly chosen between 4 and 6. With the approximation (13),
the elastic wave equation can be transformed into an ordinary algebro-differential equation for the

polynomial coefficients ū
(p)
ijk(t) that can be solved with standard numerical techniques. Starting

with the term ρ(x)ü(x, t) that appears on the left-hand side of equation (1), we compute the
Galerkin projection Ge

qrs[ρü(p)] for the element with index e (e = 1, ..., Ne):

G
e
qrs[ρü(p)] =

∫

Λ

ρ(χ)ü(p)(χ, t) ℓq(ξ)ℓr(ζ)ℓs(η)Je(χ) d3
χ ,

=

N+1
∑

ijk=1

∫

Λ

ρ(χ)¨̄u
(p)
ijk(t)ℓi(ξ)ℓj(ζ)ℓk(η)ℓq(ξ)ℓr(ζ)ℓs(η)Je(χ) d3

χ , (14)

where Je denotes the Jacobian of the transformation χe : Ge → Λ. As in the following equations
we replaced ’≈’ by ’=’ in the interest of clarity. The integral in equation (14) can be approximated
with the GLL quadrature rule. Invoking the cardinal interpolation property of the Lagrange
polynomials, ℓi(ξj) = δij , then results in the following expression:

G
e
qrs[ρü(p)] = ρ(χqrs)wqwrwsJe(χqrs) ¨̄u(p)

qrs , χqrs = (ξq, ζr, ηs)
T . (15)

The symbols wi with i = 1, ..., N + 1 denote the GLL quadrature weights. Upon using Gauss’
theorem in conjunction with the Neumann condition (2) we derive the Galerkin projection for the
p-component of the second term in equation (1):

G
e
qrs[(∇ · σ)(p)] = −

3
∑

n=1

N+1
∑

i=1

wiwrws
∂ξ

∂x(n)
ℓ̇q(ξi)σnp(χirs)Je(χirs)

−
3

∑

n=1

N+1
∑

i=1

wqwiws
∂ζ

∂x(n)
ℓ̇r(ζi)σnp(χqis)Je(χqis)

−
3

∑

n=1

N+1
∑

i=1

wqwrwi
∂η

∂x(n)
ℓ̇s(ηi)σnp(χqri)Je(χqri) . (16)

Finally, the Galerkin projection of the right-hand side of equation (1) is given by

G
e
qrs[f

(p)] = wqwrwsf
(p)(χqrs) . (17)
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The discretisation of the constitutive relation (11) follows exactly the same steps that we outlined
above, and will therefore be omitted.
Most of the computational costs are due to the evaluation of equation (16). They can, however,
be significantly reduced when the natural spherical coordinate system is used inside the elements.
This is possible because the spherical section excludes the centre of the Earth and because it can
always be rotated to a position where it is sufficiently far from the poles. Thus, the singularity
at zero radius and infinitesimally small elements at the poles can be avoided. Moreover, the
Earth is approximately radially symmetric. Not conforming the shape of the elements to lateral
variations of the medium properties does therefore not introduce significant errors. Based on these
considerations we can choose the transformation, χe : Ge → Λ, that is defined by the following
set of equations:

θ = θe,min +
1

2
∆θe(1 + ξ) , φ = φe,min +

1

2
∆φe(1 + ζ) , r = re,min +

1

2
∆re(1 + η) , (18)

where r, θ and φ denote radius, co-latitude and longitude, respectively. The geometry of this
transformation is visualised in figure 1. Using (18) instead of a general transformation, allows us
to significantly reduce the number of operations needed to evaluate the expression Gqrs[(∇·σ)(p)],
which is now given by

Gqrs[(∇ · σ)(p)] = − 2Je

∆re
wswr

N+1
∑

i=1

wiℓ̇q(ηi) [σrpr
2 sin θ]|χqri

− 2Je

∆φ
wswq

N+1
∑

i=1

wiℓ̇r(ζi) [σφpr]|χqis

− 2Je

∆θ
wrwq

N+1
∑

i=1

wiℓ̇s(ξi) [σθpr sin θ]|χirs
, (19)

with Je := 1
8∆θe ∆φe ∆re. Combining equations (15), (17), (19) and the discretisation of the

constitutive relation (4) yields the space-discretised version of the momentum equation (1). It may
symbolically be written in the form of a matrix equation:

¨̄u(t) =

∫ t1

t=t0

M(t − t′)ū(t′) dt′ + f̄(t) , ū, f̄ ∈ R
3Ne(N+1)3 , M ∈ R

3Ne(N+1)3 × 3Ne(N+1)3 , (20)

where the vector ū comprises the 3Ne(N + 1)3 polynomial coefficients defined in equation (13).
The matrix M is a function of the model parameters, and the vector f̄ is the discrete right-hand
side of the momentum equation. In the interest of clarity we decided to express the visco-elastic
dissipation as a convolution and not in terms of ODEs involving memory variables, as we did in
equation (11). Both formulations are, as shown above, equivalent.

3.2 Verification

To assess the accuracy of the spectral-element solutions, we compare them to semi-analytical
solutions [17] that exist for radially symmetric Earth models. We choose a source located at
90 km depth near the Solomon Islands and a station in eastern Australia. This source-receiver
configuration and the radially symmetric Earth model ak135 [18] are shown in figure 2.
For the numerical solution we used elements that are 0.5o × 0.5o wide and 38 km deep. The
Lagrange polynomial degree is 6. This allows us to accurately model waveforms with periods as
low as 7 s. A comparison of the semi-analytic and spectral-element solutions is shown in figure 3. In
general, the agreement between the two solutions is excellent. The difference seismogram, plotted
as 25 times amplified dashed line, is smallest for the early-arriving compressional waves. Surface
waves, appearing later in the seismograms, are more difficult to model due to their comparatively
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Simulation and inversion of seismic wave propagation 17

Figure 1: Left: Coordinate lines in a spherical section parameterised with the natural spherical coor-
dinates r, θ, φ. Right: Illustration of the mapping from the element Ge to the reference cube Λ. See
equation (18).

short wavelengths. A remarkable detail are the well-modelled small-amplitude waveforms in the
interval between 340 s and 500 s. They partly originate from reflections at the surface and the
discontinuities located at 410 km and 660 km depth.

Figure 2: Left: Source-receiver configuration. The distance between the source (◦) and station ARMA
(×) is 21.1o. Right: Radially symmetric Earth model ak135 [18] parameterised in terms of density and
the seismic P and S wave speeds.

4 Seismic waveform tomography as a discrete non-linear optimisation

problem

The objective of seismic tomography is to infer the Earth’s structure from a set of seismograms
u0(x

k, t) recorded at the receiver positions xk, with k = 1, ..., Nr. This inverse problem is ill-posed
because data is only available for discrete paths between seismic sources and a limited number of
receivers and each seismogram is contaminated by earth noise. Since analytical solutions are again
not available, we set the seismic tomography in the form of a discrete optimisation problem. For
this we assume that all structural parameters (density, elastic parameters and relaxation times)
are summarised in an Nm−dimensional model vector m ∈ R

Nm . Our goal is to find m such that
a suitably chosen objective functional − written as a time integral from t = t0 to t = t1 − is

c© 2009 European Society of Computational Methods in Sciences and Engineering (ESCMSE)
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Figure 3: Comparison of the semi-analytic solution (bold line) with the spectral-element solution (thin
line) for station ARMA, located at an epicentral distance of 21.1o from the epicentre. The difference
between the two solutions, amplified by a factor of 25 to enhance visibility, is plotted as a dashed line
below the seismograms. Also the magnified parts of the seismograms, between 340 s and 500 s, agree
remarkably well.

minimal:

E(ū,u0) =

∫ t1

t=t0

e(ū,u0) dt = min ! (21)

The objective functional quantifies the difference between the observed seismograms u0 and the
corresponding synthetic seismograms ū that we computed by solving the equations of motion. To
solve the non-linear minimisation problem iteratively we need (1) a physically meaningful definition
of the misfit, E, between synthetic and observed seismograms and (2) an efficient algorithm for the
computation of the gradient of E with respect to the model parameters m.

4.1 Definition of suitable waveform misfits

A physically reasonable definition of the misfit functional introduced in equation (21) is the cen-
trepiece of any successful waveform tomography. The misfit functional should extract as much
waveform information as possible while conforming to the following particularities and problems
of continental-scale seismic waveform tomography: (1) Amplitudes of seismic waves are strongly
and non-linearly affected by structure in the immediate vicinity of the receiver. Loose sediments,
for example, typically increase the amplitudes of seismic waves and therefore mask amplitude vari-
ations that may be caused by the deep structure of the Earth. (2) The magnitudes of natural
earthquakes are often not sufficiently well known. Amplitude discrepancies between synthetic and
observed waveforms may therefore result from inaccurate knowledge of the source rather than
being due to yet undiscovered Earth structure. (3) Relevant and robust information about the
structure of the Earth is often contained in the phase of seismic waveforms with small amplitudes.

c© 2009 European Society of Computational Methods in Sciences and Engineering (ESCMSE)
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The best known example are compressional waves − P waves in seismological terms − that have
small amplitudes compared to shear waves or surface waves.
In conclusion, phase information that is reliably measurable and quasi-linearly related to Earth
structure needs to be emphasised with respect to the less usable amplitude information. To achieve
this goal, we propose to first compute time-frequency representations of both the observed seismo-
grams and the synthetic seismograms via the transformation [19]

g̃(t, ω) :=
1√
2π

∫

R

g(τ)h∗(τ − t) e−iωτ dτ , (22)

where h∗ is the complex conjugate of a window function. We choose h to be a Gaussian with a half
width approximately equal to the dominant period of the observed seismograms. The complex
time-frequency representations of the Nr observed seismograms, ũ0(xk, t, ω), and the synthetic
seismograms, ũ(xk, t, ω), allow us to define the phase misfit

Ep(ū,u0) =

Nr
∑

k=1

∫

R2

W (t, ω)[φ(xk, t, ω) − φ0(x
k, t, ω)]2 dt dω . (23)

The phases φ(xk, t, ω) and φ0(x
k, t, ω) correspond to ũ(xk, t, ω) and ũ0(xk, t, ω), respectively. The

weighting function W (t, ω) allows us to emphasise those parts of the time-frequency seismograms
that are known from experience to be particularly informative about Earth structure in the upper
mantle.

4.2 The computation of the misfit gradient via the adjoint method

To solve the minimisation problem iteratively, using for example a conjugate-gradient algorithm,
we need to compute the derivatives

∂E(ū,u0)

∂mi
=

∫ t1

t=t0

∂e(ū,u0)

∂ūk

∂ūk

∂mi
dt , i = 1, ..., Nm , (24)

where the summation over repeated indices is implicitly assumed. Equation (24) involves the
derivatives of the displacement ūk with respect to the model parameters mi, i = 1, ..., Nm. The
finite-difference approximation of all partial derivatives ∂ūk/∂mi requires the solution of at least
Nm forward problems. Since this is computationally too expensive, we compute ∂E(ū,u0)/∂mi

using the adjoint method [20][21][22]: Integrating over a test function ū† dotted with the derivative
of equation (20) with respect to mi provides the relation

t1
∫

t=t0

ū†
k(t)

∂ ¨̄uk(t)

∂mi
dt−

t1
∫

t=t0

t1
∫

t′=t0

[

ū†
k(t)

∂Mkl(t − t′)

∂mi
ūl(t

′) + ū†
k(t)Mkl(t − t′)

∂ūl(t
′)

∂mi

]

dt dt′ = 0 , (25)

that may be added to equation (24):

∂E(ū,u0)

∂mi
=

t1
∫

t=t0

ū†
k(t)

∂ ¨̄uk(t)

∂mi
dt +

t1
∫

t=t0

∂ūk(t)

∂mi





∂e(ū,u0)

∂ūk
−

t1
∫

t′=t0

ū†
k(t′)Mkl(t

′ − t) dt′



 dt

−
t1

∫

t=t0

t1
∫

t′=t0

ū†
k(t)

∂Mkl(t − t′)

∂mi
ūl(t

′) dt dt′ . (26)
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20 A. Fichtner, H. Igel, H.-P. Bunge, B. L. N. Kennett

Repeatedly integrating the first term on the right-hand side by parts and imposing the terminal

conditions ū†|t=t1 = ˙̄u
†|t=t1 = 0, yields a modified version of equation (26):

∂E(ū,u0)

∂mi
=

t1
∫

t=t0

∂ūk(t)

∂mi





∂e(ū,u0)

∂ūk
+ ¨̄u†

k(t) −
t1

∫

t′=t0

ū†
k(t′)Mkl(t

′ − t) dt′



 dt

−
t1

∫

t=t0

t1
∫

t′=t0

ū†
k(t)

∂Mkl(t − t′)

∂mi
ūl(t

′) dt dt′ . (27)

Furthermore imposing that ū† be a solution of the adjoint equation

¨̄u†(t) =

∫ t1

t′=t0

MT (t′ − t)ū†(t′) dt′ −∇ūe(ū,u0) , (28)

allows us to give an expression for ∂E/∂mi that does not explicitly contain the unknown derivative
∂ū/∂mi:

∂E(ū,u0)

∂mi
= −

t1
∫

t=t0

t1
∫

t′=t0

ū†
k(t)

∂Mkl(t − t′)

∂mi
ūl(t

′) dt dt′ . (29)

The computation of the complete gradient of E therefore reduces to the solution of the adjoint
equation (28) and the subsequent evaluation of (29). Both steps can be performed efficiently on
modern parallel computers even for large three-dimensional problems [23].
With the derivative computed via equation (29) we can iteratively minimise the misfit E(ū,u0) by
using the iterative gradient method

mn+1 = mn − Pn · ∇mE , (∇mE)i =
∂E(ū,u0)

∂mi
, n = 0, 1, ... (30)

where Pn is a suitably chosen pre-conditioner. We stop the iteration when the remaining waveform
misfits approach the estimated level of seismic noise.

5 Application to the imaging of the Earth’s structure in the

Australasian region

We are currently testing our newly developed waveform inversion technique with data collected
on the Australian continent. The principal advantages of this choice are the availability of high-
quality seismic recordings and the relatively even distribution of sources (earthquakes) along the
tectonically actives zones surrounding the Indo-Australian plate. The data coverage is visualised
in the left panel of figure 4.
To keep the model simple during the first iterations, we restrict our attention to isotropic and
non-dissipative media where the components of the elastic tensor are given by

Cijkl(x, t) = [λ(x) δijδkl + µ(x) δikδjl + µ(x) δilδjk]H(t) . (31)

In equation (31) the symbols µ and λ denote the Lamé parameters. A preliminary model of
the shear wave velocity distribution, cs(x) =

√

µ(x)ρ−1(x), at 100 km depth is displayed in the
right panel of figure (4). As initial model we used a smoothed version of a classical surface wave
tomography [24]. Fast velocities appear mostly in the western and central parts of the Australian
continent that formed more than 550 million years ago. Younger parts of the continent, located
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in the east, are marked by slow to intermediate velocities. Tectonically active regions, such as the
subduction zones in the north and the east, are distinctively slow. A detailed interpretation of the
tomographic images will become possible after further iterations and refinements.

Figure 4: Left: Ray coverage (great circle segments between the sources and receivers used in this
study). Right: Preliminary shear velocity model (cs in m/s) at 100 km depth.
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