
European Society of Computational Methods
in Sciences and Engineering (ESCMSE)

Journal of Numerical Analysis,
Industrial and Applied Mathematics

(JNAIAM)
vol. 5, no. 1-2, 2010, pp. 113-134

ISSN 1790–8140

The New MATLAB Codebvpsuite for the Solution of Singular
Implicit BVPs 1

G. Kitzhofer, O. Koch, G. Pulverer, Ch. Simon, and E.B. Weinm̈uller2

Institute for Analysis and Scientific Computing (E101),
Vienna University of Technology,

Wiedner Hauptstrasse 8–10, A-1040 Wien, Austria

Received 21 January, 2010; accepted in revised form 23 March, 2010

Abstract:Our aim is to provide the open domain MATLAB codebvpsuite for the efficient numeri-
cal solution of boundary value problems in ordinary differential equations. Motivated by applications,
we are especially interested in designing a code whose scopeis appropriately wide, including fully im-
plicit problems of mixed orders, parameter dependent problems, problems with unknown parameters,
problems posed on semi-infinite intervals, eigenvalue problems and differential algebraic equations
of index 1. Our main focus is on singular boundary value problems in which singularities in the dif-
ferential operator arise. We first briefly recapitulate the analytical properties of singular systems and
the convergence behavior of polynomial collocation used asa basic solver in the code for both sin-
gular and regular ordinary differential equations and differential algebraic equations. We also discuss
the a posteriori error estimate and the grid adaptation strategy implemented in our code. Finally, we
describe the code structure and present the performance of the code which has been equipped with a
graphical user interface for an easy use.

c© 2010 European Society of Computational Methods in Sciencesand Engineering

Keywords:Boundary value problems – singularity of the first kind – singularity of the second kind
– analysis – collocation methods – a posteriori error estimation – mesh adaptation – pathfollowing –
eigenvalue problems – index-1 differential algebraic equations

Mathematics Subject Classification:65L10, 65L20, 65L50, 65L60

Introduction

The codebvpsuite is designed to solve general implicit mixed order systems for boundary value prob-
lems (BVPs) in ordinary differential equations (ODEs) specified in (20)–(21), subject to multi-point bound-
ary conditions. The problem can be posed on a finite interval[a, b] or on a semi-infinite interval[a,∞),
wherea ≥ 0. In the latter case the code provides an automatic transformation of the semi-infinite interval
to a finite domain. Parameter dependent problems are also in the scope ofbvpsuite. We use the pseudo
arclength parametrization to move around turning points inthe solution/parameter path.

For years, special focus of our research has been on the analysis and numerical treatment of ODEs with
time singularities. Therefore, in the introduction, we recapitulate the theoretical results available for model

1Published electronically October 15, 2010
2Corresponding author. E-mail: e.weinmueller@tuwien.ac.at

114 G. Kitzhofer et al.

problems with such singularities. Let us consider the numerical solution of singular BVPs of the form

z′(t) =
M(t)

tα
z(t) + f(t, z(t)), t ∈ (0, 1], (1)

B0z(0) +B1z(1) = β, (2)

whereα ≥ 1, z is ann-dimensional real function,M is a smoothn× n matrix andf is ann-dimensional
smooth function on a suitable domain.B0 andB1 are constant matrices which are subject to certain re-
strictions for a well-posed problem. (1) is said to feature asingularity of the first kindfor α = 1, while
for α > 1 the problem has asingularity of the second kind, also commonly referred to asessential singu-
larity. The analytical properties of problem (1)–(2) have been discussed in [16], [19] with a special focus
on the most general boundary conditions which guarantee well-posedness of the problem. When analyzing
singular problems, we first note that their direction field isvery unsmooth, especially close to the singular
point. Consequently, depending on the spectrum of the matrix M(0), we can encounter unbounded contri-
butions to the solution manifold, such thatz ∈ C(0, 1]. However, irrespective of the eigenvalues ofM(0),
by posing proper homogeneous initial conditions, we can extend the above solution toz ∈ C[0, 1]. It also
turns out that in such a case the conditionM(0)z(0) = 0 must hold. For singular problems the solution’s
smoothness depends not only on the smoothness of the inhomogeneityf but also on the size of the real parts
of the eigenvalues ofM(0). To compute the numerical solution of (1)–(2) we use polynomial collocation.
Our decision to use polynomial collocation was motivated byits advantageous convergence properties for
(1)–(2), while in the presence of a singularity other high order methods show order reductions and become
inefficient. In [8], [17], and [27] convergence results for collocation applied to problems with a singularity
of the first kind,α = 1, were shown. The usual high-order superconvergence at the mesh points does not
hold in general for singular problems, however, the uniformsuperconvergence is preserved (up to logarith-
mic factors), see [27] for details.

Motivated by these observations, we have implemented the present MATLAB code. We stress that for
bvpsuite one singular point at either endpoint or two singular pointsat both endpoints of the interval
of integration3 are admissible. The program can be applied directly to such singular BVPs and no pre-
handling is necessary. Otherwise a reformulation of the problem may be necessary, cf. (33) and (34). For
higher efficiency, we provide an estimate of the global errorand adaptive mesh selection. Transformation
of problems posed on semi-infinite intervals to a finite domain makes the solution of such problems also
accessible to our methods. All these algorithmic components have been integrated into the code. While the
first version of the code,sbvp, solves explicit first order ODEs [5], the present version,bvpsuite1.0,
can be applied to arbitrary order problems also in implicit formulation. Consequently, systems of differential
algebraic equations (DAEs) [28] are also in the scope of the code. We have also implemented a module
for eigenvalue value problems (EVPs) in which we recast the EVP as an appropriately defined BVP. As
already mentioned, a pathfollowing strategy extends the scope of the code to parameter dependent problems.
For special problem classes, such as singularly perturbed models, systems of DAEs, parameter dependent
problems and EVPs very good and efficient software already exists. We have not performed comparisons
with those codes. However, we assess the properties ofbvpsuite when the code is applied tosingular
BVPsby comparing it with other, well-established software for BVPs in ODEs. Numerical simulation of
relevant applications illustrates the scope and the performance of the implementation.

3The following equation is a typical model for such a situation

z′(t) =
M(t)

tα1 (t − 1)α2
z(t) + f(t, z(t)), t ∈ (0, 1), α1, α2 ≥ 1.

c© 2010 European Society of Computational Methods in Sciencesand Engineering (ESCMSE)

A MATLAB Code for Singular BVPs 115

Notation

Throughout the paper, the following notation is used. For functionsy ∈ C[0, 1], we define the maximum
norm,

‖y‖ := max
0≤t≤1

|y(t)|.

For the numerical analysis, we define meshes

∆ := (τ0, τ1, . . . , τN), (3)

and
hi := τi+1 − τi, Ji := [τi, τi+1], i = 0, . . . , N − 1, τ0 = 0, τN = 1. (4)

For a simpler presentation, we restrict the discussion to equidistant meshes,

hi = h, i = 0, . . . , N − 1,

see Figure 1. However, the results also hold for nonuniform meshes which have a limited variation in the

τ0 . . . τi

. . . ti,j . . .

τi+1 . . . τN︸ ︷︷ ︸

h

Figure 1: The computational grid

stepsizes [17]. On∆, we define corresponding grid vectors

u∆ := (u0, . . . , uN) ∈ R
(N+1)n. (5)

The norm on the space of grid vectors is given by

‖u∆‖∆ := max
0≤k≤N

|uk|. (6)

For a continuous functiony ∈ C[0, 1], we denote byR∆ the pointwise projection onto the space of grid
vectors,

R∆(y) := (y(τ0), . . . , y(τN)). (7)

For collocation,m points ti,j , j = 1, . . . ,m, are inserted in each subintervalJi. We choose the same
distribution of collocation points in every subinterval, thus yielding the (fine) grid4

∆m = ∆ ∪ {ti,j = τi + ρjh, i = 0, . . . , N − 1, j = 1, . . . ,m}, (8)

with
0 < ρ1 < ρ2 · · · < ρm ≤ 1. (9)

In the case where all collocation points are inner points ofJi, ρ1 < . . . < ρm < 1, we defineρm+1 := 1.
In the convergence analysis in Section 1, we restrict ourselves to grids whereρ1 > 0 to avoid a special
treatment of the singular pointt = 0 [13]. For a grid∆m, u∆m , ‖ · ‖∆m andR∆m are defined analogously
to (5)–(7).

4For convenience, we denoteτi by ti,0 ≡ ti−1,m+1, i = 1, . . . , N .

c© 2010 European Society of Computational Methods in Sciencesand Engineering (ESCMSE)

116 G. Kitzhofer et al.

1 Collocation methods

In this section, we discuss collocation with continuous, piecewise polynomial functions of degree≤ m.
Let us denote byPm the Banach space of continuous, piecewise polynomial functionsq ∈ Pm of degree

≤ m, m ∈ N (m is called thestage orderof the method), equipped with the norm‖·‖. As an approximation
for the exact solutionz of (1)–(2), we define an element ofPm which satisfies the differential equation (1)
at a finite number of points and which is subject to the same boundary conditions. Thus, we are seeking a
functionp(t) = Pi(t), t ∈ Ji, i = 0, . . . , N − 1, in Pm which satisfies

p′(ti,j) =
M(ti,j)

tαi,j
p(ti,j) + f(ti,j , p(ti,j)), (10a)

i = 0, . . . , N − 1, j = 1, . . . ,m,

B0p(0) +B1p(1) = β. (10b)

We consider collocation on grids∆m (see (8)), subject to the restrictionρ1 > 0.
In [27] the following convergence result was shown for problems with a singularity of the first kind,

α = 1 in (10a):

Theorem 1.1 Assume thatM ∈ Cm+2[0, 1], f ism+1 times continuously differentiable in[0, 1]×R
n with

∂f
∂z bounded on that domain andσ+ > m+2, whereσ+ is the smallest positive real part of the eigenvalues
of the matrixM(0). Then the collocation scheme(10) has a unique solutionp ∈ Pm in a neighborhood
of an isolated solutionz ∈ Cm+2[0, 1] of (1)–(2). This solution can be computed using Newton’s method,
which converges quadratically. Moreover,

‖p− z‖ = O(hm), (11)
∣
∣
∣
∣

M(0)

t
(p(t)− z(t))

∣
∣
∣
∣
= O(hm), t ∈ [0, 1], (12)

∥
∥
∥p(k+1) − z(k+1)

∥
∥
∥ = O(hm−k), k = 0, . . . ,m− 1, (13)

∣
∣
∣
∣
p′(t)− M(t)

t
p(t)− f(t, p(t))

∣
∣
∣
∣
= O(hm), t ∈ [0, 1]. (14)

Note that the conditionσ+ > m + 2 does not impose a restriction of generality. Forσ+ ≤ m + 2 we
cannot in general guarantee thatz ∈ Cm+2 [16], and therefore we cannot expect to observe the desired
convergence orders in this case. Consequently, the restriction σ+ > m + 2 is natural in this context. If
this assumption is not satisfied, we can always transform theequation (1) by lettingt → tλ, 1 > λ > 0,
whenceσ+ → σ+/λ. Thus, as already mentioned, the assumptionσ+ > m + 2 imposes no restriction of
generality.

The usual high-order superconvergence at the mesh points does not hold in general for singular prob-
lems, however, the uniform superconvergence is preserved (up to logarithmic factors):

‖R∆(p)−R∆(z)‖∆ = O(hm+1| ln(h)|n0−1), (15)

‖p− z‖ = O(hm+1| ln(h)|n0−1), (16)

if
∫ 1

0

sk
m∏

l=1

(s− ρl) ds = 0, k = 0, . . . , ν − 1 (17)

holds withν ≥ 1, see [8], [27] for details.

c© 2010 European Society of Computational Methods in Sciencesand Engineering (ESCMSE)

A MATLAB Code for Singular BVPs 117

For problems with an essential singularity, no theoreticalresults are known for general high-order col-
location methods. However, we observed experimentally that the stage orderO(hm) is retained for any
choice of symmetric collocation points. The superconvergence orders forν ≥ 1 in (17) are

‖R∆(p)−R∆(z)‖∆ = O(hm+γ), (18)

‖p− z‖ = O(hm+γ), (19)

where0 < γ = γ(α) < 1, andγ decreases with increasingα in (1). For non-symmetric collocation points,
we observed rapid divergence of the numerical solution. Experimental evidence for these propositions is
given in [7].

The analysis of the box scheme given in [18] implies that its order of convergence is1 + γ, where
0 < γ < 1. Since the box scheme is equivalent to collocation at Gaussian points withm = 1, this is
consistent with the above conjecture.

2 Basic Solver in theMATLAB Codebvpsuite

The code is designed to solve systems of differential equations of arbitrary mixed order including zero5,
subject to initial or boundary conditions,

F
(
t, p1, . . . , ps, z1(t), z

′
1(t), . . . , z

(l1)
1 (t), . . . , zn(t), z

′
n(t), . . . , z

(ln)
n (t)

)
= 0,

(20)

B
(
p1, . . . , ps, z1(c1), . . . , z

(l1−1)
1 (c1), . . . , zn(c1), . . . , z

(ln−1)
n (c1), . . . ,

z1(cq), . . . , z
(l1−1)
1 (cq), . . . , zn(cq), . . . , z

(ln−1)
n (cq)

)
= 0,

(21)

where the solutionz(t) = (z1(t), z2(t), . . . , zn(t))
T , and the parameterspi, i = 1, . . . , s, are unknown. In

general,t ∈ [a, b] or t ∈ [a,∞)6, a ≥ 0. Moreover,

F : [a, b]× R
s × R

l1 × · · · × R
ln → R

n,

and
B : Rs × R

ql1 × · · · × R
qln → R

l+s,

wherel :=
∑n

i=1 li. Note that boundary conditions can be posed on any subset of distinct pointsci ∈ [a, b],
a ≤ c1 < c2 < · · · < cq ≤ b.

For the numerical treatment, we assume that the boundary value problem (20)–(21) is well-posed and
has a locally unique solutionz.

In order to find a numerical solution of (20)–(21) we introduce a mesh∆, partitioning the interval[a, b]
as shown in Figure 1. Every subintervalJi containsm collocation pointsti,j = τi + ρjh, j = 1, . . . ,m,
with

0 < ρ1 < ρ2 · · · < ρm < 1. (22)

To avoid a special treatment of the possible singular pointst = a andt = b, [13], grids withρ1 > 0 and
ρm < 1, e.g. Gaussian points or inner equidistant points, are used. LetPr be the space of piecewise polyno-
mial functions of degree≤ r, see Section 1, which are globally continuous in[a, b]. In every subintervalJi
we make an ansatzPi,k ∈ Pm+lk−1 for thek-th solution componentzk, k = 1, . . . , n, of the problem (20)–
(21). In order to compute the coefficients in the ansatz functions we require that (20)–(21) is satisfied exactly
at the collocation points. Moreover, we require that the collocation polynomialp(t) := Pi(t), t ∈ Ji, is

5This means that differential algebraic equations are also in the scope of the code.
6For the extension to unbounded domains, see Section 5.

c© 2010 European Society of Computational Methods in Sciencesand Engineering (ESCMSE)

118 G. Kitzhofer et al.

a globally continuous function on[a, b] with components inCli−1[a, b], i = 1, . . . , n, and satisfies the
boundary conditions. All these conditions imply a nonlinear system of equations for the unknown coeffi-
cients in the ansatz function. For more details see [3] and [23]. It can be easily seen that the number of
equations in this nonlinear system amounts toNmn+ Nl + s. Every component of the polynomialPi,k,
i = 0, . . . , N−1, k = 1, . . . , n is characterized bym + lk unknown coefficients, and therefore for every
i the polynomialPi,k hasnm+ l coefficients to be determined. This together withs unknown parameters
adds to a total number of unknowns which is also equal toN(nm+ l) + s.

For the representation of the collocation polynomialp we use the Runge-Kutta basis, see [3], and solve
the resulting nonlinear system for the coefficients in this representation by a Newton iteration implemented
in the subroutine ‘solvenonlinearsys.m’ from the MATLAB codesbvp [5], which is based on the ‘fast
frozen’ Newton method.

3 Error Estimate for the Global Error of the Collocation

Our estimate for the global error of the collocation solution is a classical error estimate based on mesh
halving. In this approach, we compute the collocation solution atN points on a grid∆ with step sizes
hi and denote this approximation byp∆(t). Subsequently, we choose a second mesh∆2 where in every
intervalJi of ∆ we insert two subintervals of lengthhi/2. On this mesh, we compute the numerical solution
based on the same collocation scheme to obtain the collocating functionp∆2

(t). Using these two quantities,
we define

E(t) := 2m

1− 2m
(p∆2

(t)− p∆(t)) (23)

as an error estimate for the approximationp∆(t). Assume that the global errorδ(t) := p∆(t) − z(t) of the
collocation solution can be expressed in terms of the principal error functione(t),

δ(t) = e(t)hm
i +O(hm+1

i), t ∈ Ji, (24)

wheree(t) is independent of∆. This property is known to hold for many standard discretization methods,
[33], [40], in case that the analytical solution of the problem is appropriately smooth. Note that a similar
representation holds for the residual of the collocation solution [33]. Then obviously the quantityE(t)
satisfiesE(t)− δ(t) = O(hm+1). This holds for problems with a singularity of the first kind and for regular
problems. However, numerical results reported in [6] indicate that in case of an essential singularity (24)
reads

δ(t) = e(t)hm
i +O(hm+γ

i), t ∈ Ji, (25)

with γ < 1. Generally, estimates of the global error based on mesh halving work well for both problems
with a singularity of the first kind and for essentially singular problems [6]. Since they are also applica-
ble to higher-order problems and problems in implicit form (as for example DAEs) without the need for
modifications, we have implemented this strategy in our codebvpsuite.

4 Adaptive Mesh Selection

The mesh selection strategy implemented inbvpsuite was proposed and investigated in [31]. Most
modern mesh generation techniques in two-point boundary value problems construct a smooth function
mapping a uniform auxiliary grid to the desired nonuniform grid. In [31] a new system of control algo-
rithms for constructing a grid density functionφ(t) is described. The local mesh widthhi = τi+1 − τi is
computed ashi = εN/ϕi+1/2, whereεN = 1/N is the accuracy control parameter corresponding toN − 1

interior points, and the positive sequenceΦ = {ϕi+1/2}N−1
i=0 is a discrete approximation to the continuous

density functionφ(t), representing the mesh width variation. Using an error estimate, a feedback control

c© 2010 European Society of Computational Methods in Sciencesand Engineering (ESCMSE)

A MATLAB Code for Singular BVPs 119

law generates a new density from the previous one. Digital filters may be employed to process the error
estimate as well as the density.

For boundary value problems, an adaptive algorithm must determine the sequenceΦ[ν] in terms of prob-
lem or solution properties. True adaptive approaches equidistribute somemonitor function, a measure of
the residual or error estimate, over the interval. AsΦ[ν] will depend on the error estimates, which in turn
depend on the distribution of the grid points, the process offinding the density becomesiterative. For some
error control criteria a local grid change typically has global effects. The techniques developed here avoid
this difficulty by restricting the error estimates to those having the property that the estimated error on the
intervalJi only depends on the local mesh width,hi = εN/ϕi+1/2.

In order to be able to generate the mesh density function, we decided to use the residualr(t) to define
the monitor function. The values ofr(t) are available from the substitution of the collocation solution p(t)
into the analytical problem (20)–(21). We first compute

Rk(τi+1/2) =

τi+1∫

τi

rk(t) dt ≈
rk(τi) + rk(τi+1)

2
(τi+1 − τi)

for i = 0, . . . , N −1 and for each componentrk, k = 1, . . . , n, of the residualr. Now, for each subinterval
Ji, we calculate

R̂(τi+1/2) :=

(
n∑

k=1

R2
k(τi+1/2)

) 1
2

, i = 0, . . . , N − 1,

to obtain the values of the monitor function related to subintervalsJi, necessary for the update ofΦ[ν].
While the residual based monitor functionR(t) := R̂(τi+1/2), t ∈ Ji, is used to update the mesh

density, the number of necessary mesh points in the final meshis determined from the requirement that
the absolute global error satisfies the tolerance. The mesh halving routine provides the values of the error
estimate (23) in the entire interval[a, b], so we can compute

G∆m := max
t

(max
1≤k≤n

|Ek(t)|), t ∈ ∆m.

The number of points for the next iteration step is predictedfrom

Nν+1 = N0

(
G∆m

0.9TOL

)1/(m+1)

, (26)

whereN0 = 50 is the fixed number of points in the control grid. Below, we specify in more detail the grid
adaptation routine implemented in the code.

1. Grid generation, finding the optimal density function, isseparated from mesh refinement, finding the
proper number of mesh points. We first try to provide a good density functionΦ on a rather coarse
mesh with a fixed number of pointsN0 = 50. The mesh density function is chosen to equidistribute
the monitor functionR(t).

2. For each density profile in the above iteration, we estimate the number of mesh points necessary to
reach the tolerance, according to (26).

3. The calculation of the density function is terminated whenNν+1 > 0.9Nν. Clearly, it can be expected
that in the course of the optimization of the density function the number of the associated mesh points
will monotonically decrease. This process is stopped when the next density profileΦ[ν+1] would
result in saving less than 10% of the mesh points compared to the current density profileΦ[ν].

c© 2010 European Society of Computational Methods in Sciencesand Engineering (ESCMSE)

120 G. Kitzhofer et al.

4. Since the computation of a residual is reasonably cheap wealways update the density profile to make
use of the information provided by the most recent availablenumerical solution associated with the
functionΦ[ν].

5. We finally solve the problem on the mesh based onΦ[ν+1] with N [ν+1] mesh points, and estimate the
global error of this approximation. If the accuracy requirement is satisfied, we stop the calculations,
otherwise we refine again.

In Figure 2 we illustrate how the mesh adaptation is performing when it is applied to solve problem
(29)–(30) below fork = 5.

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1
exact solution

t

z

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1
exact solution

t

z

N
0
=20

N=20

N=20

N=20

N=96

N
0
=50

N=50

N=50

N=99

Figure 2: Problem (29)–(30): Steps of the grid adaptation procedure carried out for collocation atm = 4
Gaussian points andTOLa = 10−6

For more details and the results of numerical tests, we referthe reader to [31].

5 Pathfollowing and Problems on Semi-Infinite Intervals

In this and in the following sections, we discuss the scope ofbvpsuite and its special features which
allow to cover a very wide range of applications. First of all, our code realizes a pathfollowing strategy to
follow solution branches in dependence of a known parameter. To describe the strategy in general terms,
we consider (1)–(2) as a parameter-dependent operator equation

F (y;λ) = 0, (27)

c© 2010 European Society of Computational Methods in Sciencesand Engineering (ESCMSE)

A MATLAB Code for Singular BVPs 121

whereF : Y × R → Z, andY, Z are Banach spaces (of possibly infinite dimension).
Pathfollowing in this general setting has been discussed indetail in [41].
We are particularly interested in computing solution branchesΓ with turning points. By definition, in

a turning point the solution of (27) constitutes a local maximum (or minimum) ofλ, and consequently is
not locally unique as a function of the parameterλ. The situation is illustrated in Figure 3. There, we plot
some functional of the solution against the parameterλ. The arrows indicate the turning points. Thus, in a
turning point we cannot parametrizeΓ as a function ofλ. However, it is sufficient for our procedure that
a tangent is uniquely determined at all points ofΓ. This is guaranteed by realistic assumptions formulated
for our problem in [25].

Now, we proceed by describing our pathfollowing strategy. As explained in [25], our assumptions on the
problem ensure that at a point(y0, λ0) ∈ Γ, a tangent can be uniquely determined up to the sign. Additional
criteria determine how to choose the direction. On the tangent just computed, a predictor(yP , λP) is chosen
for the computation of the next point onΓ, and finally a corrector equation is solved yielding(yC , λC). One
step of our procedure starting at(y0, λ0) is illustrated in Figure 3.

λ

φ(
y)

λ

φ(
y)

(y
0
,λ

0
)(y

0
,λ

0
)(y

0
,λ

0
)

(y
C

,λ
C

)

(y
P
,λ

P
)

Figure 3: A solution branch with two turning points (left), one step of the pathfollowing procedure (right).

As one example to demonstrate that our pathfollowing strategy indeed works for singular boundary
value problems and generates meshes adapted to the solutionprofile, in [25] we considered an example
from [14], describing the buckling of a spherical shell.

We followed the solution pathΓ shown in Figure 4, starting atλ = 0. Figure 4 shows the maximum
norm of the first solution component,‖β‖∞ along the pathΓ. The crosses indicate points ofΓ where
the solution profiles ofβ and the second solution componentΨ are plotted in Figure 5, together with the
meshes generated by our adaptive mesh selection procedure.A comparison with [14, Figure 10] shows
that the solution is computed reliably and obviously the meshes are denser where the solution varies more
rapidly.

Our code can also treat problems which are posed on semi-infinite intervalst ∈ [a,∞), a > 0 (and by
a splitting of the interval, also fora = 0). In order to exploit our efficient and robust mesh selectionstrategy
also in this case, we use the transformationt = a

τ , z(t) = x
(
a
τ

)
to restate

x′(τ) = τβf(τ, x(τ)), τ ∈ [a,∞), β > −1,

as

z′(t) = − 1

tβ+2
f(1/t, z(t)), t ∈ (0, 1].

This is in general a problem with an essential singularity, which however is in the scope for our collocation
methods, error estimation procedure and adaptive mesh refinement. In this approach, the mesh is adapted
only according to the unsmoothness of the solution without the need for mesh grading on long intervals, and
moreover no truncation of the unbounded interval is necessary. This strategy was employed successfully
for example in [11], [12] and [24].

c© 2010 European Society of Computational Methods in Sciencesand Engineering (ESCMSE)

122 G. Kitzhofer et al.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

1.5

2

2.5

3

3.5

4

λ

||β
|| ∞

0.98 1 1.02 1.04

0

0.05

0.1

Figure 4: Values of‖β‖∞ along a solution branch.

6 Code Structure

To install the code, create an empty folder and copy the files of bvpsuite1.0.zip into it. This archive is
available fromhttp://www.math.tuwien.ac.at/∼ewa. The code has been extensively tested for
the MATLAB versions 7.1–7.2 (R2006a) and needs the Symbolic Math Toolbox (optimized for Version 3.1)
based on the Maple Engine. This toolbox is only necessary fortheautomatictransformation of problems
posed on the semi-infinite interval to the finite one. Newer versions of MATLAB either do not contain the
Symbolic Math Toolbox or it is based on the MuPAD Engine. Unfortunately the syntax differs, so these
versions of the Symbolic Math Toolbox are not compatible with the above modules ofbvpsuite1.0.
For computations involving problems posed on finite domainsnewer versions of MATLAB , e.g. MATLAB

version 7.8 (R2009a), can also be used. For future releases of bvpsuite it is planned to make the code
compatible with the new engine syntax.

6.1 Files in the Package

The packagebvpsuite contains the following m-files

• bvpsuite.m – main routine to start the graphical user interface (GUI).

• equations.m – contains the most important parts of the code,e.g. setting up the nonlinear system of
equations for the Newton solver.

• solvenonlinearsys.m – contains the Newton solver.

• run.m – manages routine calls.

• errorestimate.m – provides error estimates.

c© 2010 European Society of Computational Methods in Sciencesand Engineering (ESCMSE)

A MATLAB Code for Singular BVPs 123

0 1 2 3
−0.01

0

0.01

t
β(

t)
0 1 2 3

−1

0

1

t

Ψ
(t

)

0 1 2 3
0

1

2

λ=0.99

0 1 2 3
−0.2

0

0.2

t

β(
t)

0 1 2 3
−1

0

1

t

Ψ
(t

)

0 1 2 3
0

1

2

λ=0.5072

0 1 2 3

−0.2

0

0.2

t

β(
t)

0 1 2 3

−0.2

0

0.2

t

Ψ
(t

)
0 1 2 3

0

1

2

λ=0.28077

0 1 2 3

−1

0

1

t

β(
t)

0 1 2 3

−0.5

0

0.5

t

Ψ
(t

)

0 1 2 3
0

1

2

λ=0.091308

0 1 2 3

−2

0

2

t

β(
t)

0 1 2 3

−1

0

1

t

Ψ
(t

)

0 1 2 3
0

1

2

λ=0.070051

0 1 2 3
−4

−2

0

2

t

β(
t)

0 1 2 3
−1

0

1

2

t

Ψ
(t

)

0 1 2 3
0

1

2

λ=0.10156

Figure 5: Solution profiles and automatically selected meshes at the points marked in Figure 4 along the
solution branch.

• meshadaptation.m – runs the automatic grid control.

• initialmesh.m – provides the initial data for the Newton solver.

• pathfollowing.m – realizes the pathfollowing routine.

• settings.m – opens a window to set parameters.

• sbvpset.m – sets the options for the Newton solver.

• EVPmodule.m – carries out the reformulation of an EVP to a BVP.

• trafomodule.m – automatically transforms a problem posed on a semi-infinite interval[a,∞), a ≥ 0
to a finite domain[0, 1].

• backtransf.m – back-transforms the solution to the interval [a, L] ⊂ [a,∞), L large.

c© 2010 European Society of Computational Methods in Sciencesand Engineering (ESCMSE)

124 G. Kitzhofer et al.

• plot results.m – provides graphical solution output.

• plotrange.m – defines settings for a solution plot on a subinterval[a, L] ⊂ [a,∞), L large.

• err.m – contains error messages.

More information on the code, input/output parameters, andGUI can be found in the manual [26].

7 Code Performance

In this section, we comment on the performance of our codebvpsuite when compared to other available
software for the numerical solution of boundary value problems in ordinary differential equations. Since
our focus is on singular boundary value problems, we have chosen those codes which explicitly claim that
singular problems are in their scope. Therefore, we take into consideration the standard MATLAB code
bvp4c [35] and the related solversbvp5c [22], bvp6c [15], and two FORTRAN codes, BVPSOLVER
specified in [36] and COLNEW described in [1] and based on one of the best established BVP solvers
COLSYS [2].

Although the objective of this paper has been to introduce our code and describe its scope and features,
we shall have a brief look at howbvpsuite performs compared to existing codes. A full code comparison
is a major investigation and is beyond the scope of this paper; we shall return to this issue in future work.
Thus the test that follows only demonstrates feasibility ona single problem, and is not claimed to represent
code comparison issues in full. Indeed, we were rather interested to see where there is a potential to improve
the performance and efficiency of thebvpsuite package.

Our main intention while designingbvpsuite was to provide a MATLAB code which can cope with
a wide range of applications and works dependably and efficiently for a large range of tolerances with em-
phasis on high-precision solution. Therefore, we have chosen thefully implicit formulationof the nonlinear
system of equations and nonlinear boundary conditions, seeSection 2. The order of the differential equa-
tions in the components of the system can be arbitrary and different for different components. Thus, there
is no need to transform a higher order system to its first orderform. The code can cope with free unknown
parameters for which the appropriate number of additional boundary conditions are specified at the borders
or within the interval of integration. In its scope are nonlinear singular boundary value problems with a
singularity of the first or of the second kind7. Over the years, we have been able to give a good theoretical
justification for all components of the code, also in the context of singular problems, see for instance the
list of publications athttp://www.math.tuwien.ac.at/∼ewa.
The code can solve index-1 differential algebraic equations, a coupled system of differential equations and
algebraic constraints. Also, it is equipped with a pathfollowing strategy in case of known parameter val-
ues such that the turning points in the solution/parameter path do not constitute a difficulty. Recently, we
have equipped the code with modules for the solution of eigenvalue problems of first and second order, see
the references below. Moreover, for a problem posed on a semi-infinite interval [a,∞), a ≥ 0 the code
automatically reduces the problem to the interval[0, 1] and after numerical computations it provides the
approximate solution transformed back to a suitable interval [0, L], L < ∞, with L specified by the user.
The order of the collocation solver is chosen automaticallyin dependence of the tolerance specified by the
user and varies between two and eight. We stress that since inour code Gaussian points (or equidistant
interior collocation points) are used, we avoid the evaluation at the singular point and therefore also in the
case of singular problems onlyone numerical method on the whole intervalis used and no pre-handling is
necessary. In other words, there is no distinction between the solution of singular or regular problems with
bvpsuite. The error estimate and the grid adaptation routine have been described in Sections 3 and 4,

7and clearly, problems with no singularity

c© 2010 European Society of Computational Methods in Sciencesand Engineering (ESCMSE)

A MATLAB Code for Singular BVPs 125

respectively

The codebvp4c8 [34] can solveexplicit nonlinear systems of order onewith nonlinear boundary
conditions and unknown parameters. However, the singular problems have to show a special structure,

z′(t) =
S

t
z(t) + f(t, z(t)), t ∈ (0, T], (28)

with a constant matrixS. This means that only a singularity of the first kind in this particular form is in
the scope of the code. The basic solution method is based on polynomial collocation with four, five or six
Lobatto points, respectively. Within one routine the orderof the method is fixed to four, five or six. The
quantity to be estimated and controlled is the residual, andresidual and error in case ofbvp5c [22].

The BVPSOLVER [36] covers the same class of problems, regular and singular, asbvp4c. The
methods used here are implicit Runge-Kutta schemes (MIRKDC) of orders two, four, and six. The code
controls the defect in the differential equations and boundary conditions and also provides an estimate for
the global error using the extrapolation technique.

Finally, COLNEW [1] can solveexplicit nonlinear systems of ordinary differential equations of mixed
order up to four. The basic solver is collocation based on Gaussian points whose number ranges from one
to seven. The code controls the global error estimated from the mesh halving principle which in the case
of Gaussian points is strongly related to the residual. In this code a pathfollowing strategy is also available
and the code can cope with free parameters.

We compare the performance of the codes by solving the following boundary value problem:

z′(t) =
1

t

(
0 1
2 6

)

z(t)+

(
0

4k2t5 sin(k2t2) + 10t sin(k2t2)

)

, (29)

(
0 1
0 0

)

z(0) +

(
0 0
1 0

)

z(1) =

(
0

sin(k2)

)

, (30)

where the analytical solution is known,

z(t) = (t2 sin(k2t2) , 2k2t4 cos(k2t2) + 2t2 sin(k2t2))T .

We have used all the codes with fixed orders four and six and a variable order version ofbvpsuite,
that allows the order to be selected automatically depending on TOL, with order varying from2 to 8, see
curves ‘bvpsuite vo’. All codes have been run for the same tolerance settings and the same number of
points in the initial mesh. The results show that our approach provides the most efficient solution method.
Therefore the flexibility of our code also constitutes a significant improvement of the performance. The
model problem (29)–(30) discussed here, gives a typical picture observed in many tests.

We investigate the following parameters. First, we check the total number of function calls (Figure 6),
then the number of grid points on the final computational grid(Figure 7), and finally the CPU time (Figure
8). When the order is fixed to four for comparison, the number of grid points required bybvpsuite and
COLNEW is comparable and smaller throughout than forbvp4c and BVPSOLVER. Especially, for strict
tolerances, the gap betweenbvpsuite and COLNEW and the other two codes is significant. The strictest
tolerance successfully reached by the BVPSOLVER was10−10, and bybvp4c 10−11, whilebvpsuite
and COLNEW reached an accuracy of10−13. The test also shows that for a wide range of tolerances,
bvpsuite with the variable order option produces grids with the fewest points. The number of function
calls inbvpsuite can still be reduced, as the global error estimate currentlyimplemented is a simple
approach using an extra grid with twice as many points as the actual grid; this will be modified to a strategy

8In the following, we refer tobvp4c only, even when all three variants of the code are addressed includingbvp5c [22] and
bvp6c [15].

c© 2010 European Society of Computational Methods in Sciencesand Engineering (ESCMSE)

126 G. Kitzhofer et al.

where the global error is estimated on the actual grid. We expect this to save up to another factor of2 in
CPU time.

10
−13

10
−11

10
−9

10
−7

10
−5

10
−3

10
−110

2

10
3

10
4

10
5

10
6

tolerance

fu
nc

tio
n

ev
al

ua
tio

ns

bvpsuite
bvpsuite vo
bvp4c
colnew
bvp_solver

10
−13

10
−11

10
−9

10
−7

10
−5

10
−3

10
−110

2

10
3

10
4

10
5

tolerance

fu
nc

tio
n

ev
al

ua
tio

ns

bvpsuite
bvpsuite vo
bvp6c
colnew
bvp_solver

Figure 6: Problem (29)–(30),k = 5: Total number of function calls for the method of order four (left) and
order six (right) plotted as a function ofTOL.

10
−13

10
−11

10
−9

10
−7

10
−5

10
−3

10
−110

1

10
2

10
3

10
4

10
5

tolerance

gr
id

 p
oi

nt
s

bvpsuite
bvpsuite vo
bvp4c
colnew
bvp_solver

10
−13

10
−11

10
−9

10
−7

10
−5

10
−3

10
−110

1

10
2

10
3

tolerance

gr
id

 p
oi

nt
s

bvpsuite
bvpsuite vo
bvp6c
colnew
bvp_solver

Figure 7: Problem (29)–(30),k = 5. Number of grid points used by methods of order four (left) and six
(right) plotted as functions ofTOL. Note that the variable orderbvpsuite solves the problem on the
N0 = 50 adaptive control grid for all except the strictest tolerances. The control algorithms implemented
in the code require the least number of grid points over a widerange of tolerances.

c© 2010 European Society of Computational Methods in Sciencesand Engineering (ESCMSE)

A MATLAB Code for Singular BVPs 127

10
−13

10
−11

10
−9

10
−7

10
−5

10
−3

10
−110

−1

10
0

10
1

10
2

tolerance

tim
e

bvpsuite
bvpsuite vo
bvp4c
colnew
bvp_solver

10
−13

10
−11

10
−9

10
−7

10
−5

10
−3

10
−110

−1

10
0

10
1

10
2

tolerance

tim
e

bvpsuite
bvpsuite vo
bvp6c
colnew
bvp_solver

Figure 8: Problem (29)–(30),k = 5. CPU time used by methods of order four (left) and six (right)plotted
as functions ofTOL.

Finally, we also investigate the actual error produced by each code (Figure 9). The latter test suggests
thatbvpsuite’s automatic order selection can be further improved to enhance the code’s performance. It
is worth mentioning that the BVPSOLVER andbvp4c work for this example very well at target, which
means that the required tolerance and the achieved accuracyare closely related.

10
−13

10
−11

10
−9

10
−7

10
−5

10
−3

10
−110

−15

10
−10

10
−5

10
0

tolerance

m
ax

im
al

 g
lo

ba
l e

rr
or

ord2
ord4
ord6
ord8
varord

10
−13

10
−11

10
−9

10
−7

10
−5

10
−3

10
−110

−15

10
−10

10
−5

10
0

tolerance

m
ax

im
al

 g
lo

ba
l e

rr
or

bvpsuite vo
bvp6c
colnew
bvp_solver

Figure 9: Problem (29)–(30),k = 5. Achieved global error for orders two, four, six, eight and variable or-
der inbvpsuite (left) and comparison between methods of order six and the variable orderbvpsuite
(right) plotted as functions ofTOL. The graphs indicate that with the new grid generation algorithm,
bvpsuite’s order selection strategy – not studied yet in detail – may be too conservative, and that further
work on order selection has a potential for enhancing code efficiency.

8 Applications

As already mentioned, eigenvalue problems [4], [37] and differential algebraic equations [9], [28], are
within the scope of our code, but it can also be applied in caseof non-standard singularities. In [32], we

c© 2010 European Society of Computational Methods in Sciencesand Engineering (ESCMSE)

128 G. Kitzhofer et al.

investigated the following singular equation which originates from the theory of shallow membrane caps,

(t3u′(t))′ + t3
(1

8u2(t)
− a0

u(t)
− b0t

2γ−4
)

= 0, t ∈ (0, 1], (31)

subject to asymptotic boundary conditions

lim
t→0+

t3u′(t) = 0, u(1) = 0,

wherea0, b0, andγ are given constants. Note that this problem has a more challenging structure than
(1)–(2). After rewriting (31), we obtain the explicit version of the equation,

u′′(t) +
3

t
u′(t) +

(1

8u2(t)
− a0

u(t)
− b0t

2γ−4
)

= 0, u(1) = 0. (32)

Here, a singularity of the first kind occurs att = 0, but at the same time due to the boundary condition at
t = 1 the problem has a so-calledphase singularityat the other end of the interval. For such more involved
problems existence and uniqueness of solutions is shown by means of generalized lower and upper func-
tions, involving limiting processes, cf. [32] and references therein. Our codebvpsuite could be used to
approximate solutions9 of the membrane problem. However, a theoretical justification for the collocation
method in view of the problem structure is still an open question.

Another source of challenging problems with an interestingsolution structure are reaction-diffusion
equations, see [38], [39]. In [38], the simple looking, parameter dependent problem of the form

u′′(t) =
λ

√

u(t)
, t ∈ (0, 1], u(0) = u(1) = 1, (33)

whereλ is a given parameter, turns out to have a very challenging structure. Depending on the value of
λ there exist the so-called positive solutions,u(t) > 0 for all t ∈ [0, 1], pseudo dead core, and dead
core solutions, such thatu(t) = 0 for a certain pointt ∈ (0, 1), or u(t) = 0 on a certain subinterval
t ∈ [α, β], 0 < α < β < 1, respectively. In order to find the latter two solutions, we simulated the problem
numerically usingbvpsuite. Here, we utilized the fact that the above equation can be treated in its fully
implicit form,

u′′(t)
√

u(t)u(t) = λu(t), t ∈ (0, 1], u(0) = u(1) = 1. (34)

Clearly, in cases where the analytical problem is especially involved, the numerical approach may some-
times constitute the only source of information about the solution structure. We faced this type of difficulty
in [39]. Since the problem is again parameter dependent, we applied the pathfollowing strategy imple-
mented inbvpsuite to solve

((u′(t))3)′ +
u′(t)

t2
= λ

(

1
√

u(t)
+ (u′(t))2

)

, t ∈ (0, 1), (35)

u′(0) = 0, 0.1u(1) + u′(1) = 1. (36)

The results of this simulation are shown in Figure 12. We can see that for a certain range ofλ the positive
solution is unique, and for the other part of the path, we could find two different positive solutions, see
Figures 10 and 11. According to Figure 12, we have moved around a turning point atλ ≈ 1.8442.

9even thoughu′(0) may become unbounded

c© 2010 European Society of Computational Methods in Sciencesand Engineering (ESCMSE)

A MATLAB Code for Singular BVPs 129

0 0.2 0.4 0.6 0.8 1

4.9

4.92

4.94

4.96

4.98

5

5.02

5.04

5.06

t

u(
t)

Solution

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

1.5

x 10
−14

t

e(
t)

Error Estimate

0 0.2 0.4 0.6 0.8 1

10
−15

10
−14

10
−13

10
−12

t

r(
t)

Residual

Figure 10: Problem (35)–(36): The numerical solution, the error estimate and the residual forλ =
1.42604644036221.

0 0.2 0.4 0.6 0.8 1
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

t

u(
t)

Solution

0 0.2 0.4 0.6 0.8 1
0.8

1

1.2

1.4

1.6

1.8

x 10
−13

t

e(
t)

Error Estimate

0 0.2 0.4 0.6 0.8 1

10
−14

10
−12

10
−10

t
r(

t)

Residual

Figure 11: Problem (35)–(36): The numerical solution, the error estimate and the residual forλ =
1.42139222684689.

Finally, in the last step of the procedure, we obtained a solution which nearly reaches a pseudo dead
core solution with the collocation solutionp(0) ≈ u(0) ≈ 0.

0.6 0.8 1 1.2 1.4 1.6 1.8

1

2

3

4

5

6

7

8

λ

||p
||

Figure 12: Graph of the‖p‖/λ path obtained in 76 steps of the pathfollowing procedure, where‖p‖ =
max
t∈[0,1]

|p(t)|. The turning point has been determined asλ ≈ 1.8442.

Finally, we present a boundary value problem which originates from a theory for the explosive crystal-
lization of thin amorphous layers on a substrate [10], [29],[30]. The speed, form and temperature distri-

c© 2010 European Society of Computational Methods in Sciencesand Engineering (ESCMSE)

130 G. Kitzhofer et al.

bution of a crystallization front propagating through a thin layer of amorphous material on a substrate is
calculated. While the simplified formulation treated here is useful as a demonstration of a problem behavior,
the ultimate aim is to solve a more complicated problem including heat loss into the substrate, and the influ-
ence of said heat loss on the crystallization process. The original problem posed on a semi-infinite interval
τ ∈ [0,∞) has been transformed to a finite intervalt ∈ [0, 1] by means of the following transformation
[10]:

t = 1− 1√
1 + τ

.

The resulting boundary value problem for a system of two equations, for the temperature distributionΘ(t)
and the the crystallizationξ(t), t ∈ [0, 1), reads,

Θ′(t) = 2
Θ(t)− ξ(t)

(1 − t)3
, (37)

ξ′(t) = 2
λ2e−3/Θ(t)(1− ξ(t))

(
−3√
2
ln(1 − ξ(t))

)2/3

(1 − t)3
, (38)

Θ(0) = 0.1284, Θ(1) = 1. (39)

Due to the above transformation an essential singularity occurs att = 1. In this caseλ is an unknown
parameter related to the speed of the crystallization front. The third condition necessary to close the problem
reflects the fact that at the beginning of the process tiny crystals may already exist in the material, and
thereforeξ(0) is very small. For the calculations, we usedξ(0) = 10−10. The results of the numerical
experiment are shown in Figures 13 and 14. It can be seen from Figure 14 that the rather strict tolerances
have been satisfied on a final mesh with198 subintervals (199 mesh points). Note that due to strict tolerance
requirement, meshes are rather dense on the whole domain, but points accumulate in the region where
the solution varies strongly. The accumulation of points near t = 1 can be attributed to our deforming
transformation of the independent variable. In the original variable, grid points thin out for largeτ .

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

solution

t

Figure 13: Problem (37)–(38): Graph of the solution componentsΘ(t) (blue) andξ(t) (green) obtained
from bvpsuite using collocation withm = 8 Gaussian points andTOLa = TOLr = 10−12. Here,
λ = 11.03605.

c© 2010 European Society of Computational Methods in Sciencesand Engineering (ESCMSE)

A MATLAB Code for Singular BVPs 131

N
0
=100

N=100

N=199

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

t

m
es

h
de

ns
ity

Figure 14: Problem (37)–(38): Steps of the grid adaption procedure carried out for collocation withm = 8
Gaussian points andTOLa = TOLr = 10−12 (top) and the mesh density function in the final mesh (bottom).
In the meshes shown left only every fifth mesh point is depicted in order to better visualize its location.

9 Conclusions

In this paper we gave an overview of the very intense activities carried out for many years at Vienna Uni-
versity of Technology and focused on the analysis, numerical solution and code development for singular
boundary value problems in ordinary differential equations, differential algebraic equations, and problems
posed on semi-infinite intervals.

When analyzing singular problems, we first note that their direction field is very unsmooth, especially
close to the singular point. Consequently, we can encounterunbounded contributions to the solution man-
ifold, such thatz ∈ C(0, 1]. However, irrespective of the spectrum of the matrixM(0), by posing proper
homogeneous initial conditions, we can extend the above solution toz ∈ C[0, 1]. It also turns out that in

c© 2010 European Society of Computational Methods in Sciencesand Engineering (ESCMSE)

132 G. Kitzhofer et al.

such a case the conditionM(0)z(0) = 0 must hold. For singular problems the solution’s smoothnessde-
pends not only on the smoothness of the inhomogeneityf but also on the size of real parts of the eigenvalues
of M(0).

Concerning the numerical treatment of singular problems one usually assumes that the underlying an-
alytical problem is well-posed and has a smooth solution. Onthe basis of such an assumption, one would
like to design a high order method, and error estimate and grid adaptation strategies, which remain unaf-
fected by the steep direction field. This means that the gridsshould become dense only in the regions where
the solution is unsmooth. Especially they should stay coarse close to the singularity when the solution is
smooth there. It turns out that collocation at Gaussian (or inner equidistant) points remains robust for singu-
lar problems and can serve as a dependable solver in the code design, while other high order methods suffer
from order reductions. Also, defect correction and mesh halving principles constitute a reliable basis for the
a posteriori error estimation. We have put a lot of effort in the grid adaptation strategy. Here, the main idea
is to split the adaptation of the grid density and the number of grid points necessary to satisfy the tolerance
requirements. This idea has proven to be very fruitful and results in grids which in a very satisfactory way
reflect the solution behavior.

Finally, we introduced and described in detail our new MATLAB solverbvpsuite and demonstrated
that concerning the scope and efficiency it is a very competitive candidate among the available software for
singular boundary value problems.

References

[1] U. Ascher and U. Bader. A new basis implementation for a mixed order boundary value ODE solver.
SIAM J. Scient. Stat. Comput., 8:483–500, 1987.

[2] U. Ascher, J. Christiansen, and R.D. Russell. A collocation solver for mixed order systems of boundary
values problems.Math. Comp., 33:659–679, 1978.

[3] U. Ascher, R.M.M. Mattheij, and R.D. Russell.Numerical Solution of Boundary Value Problems for
Ordinary Differential Equations. Prentice-Hall, Englewood Cliffs, NJ, 1988.

[4] W. Auzinger, E. Karner, O. Koch, and E.B. Weinmüller. Collocation methods for the solution of
eigenvalue problems for singular ordinary differential equations. Opuscula Math., 26(2):229–241,
2006.

[5] W. Auzinger, G. Kneisl, O. Koch, and E.B. Weinmüller. A collocation code for boundary value
problems in ordinary differential equations.Numer. Algorithms, 33:27–39, 2003.

[6] W. Auzinger, O. Koch, D. Praetorius, and E.B. Weinmüller. New a posteriori error estimates for
singular boundary value problems.Numer. Algorithms, 40:79–100, 2005.

[7] W. Auzinger, O. Koch, and E.B. Weinmüller. Collocationmethods for boundary value problems with
an essential singularity. In I. Lirkov, S. Margenov, J. Wasniewski, and P. Yalamov, editors,Large-Scale
Scientific Computing, volume 2907 ofLecture Notes in Computer Science, pages 347–354. Springer
Verlag, 2004.

[8] W. Auzinger, O. Koch, and E.B. Weinmüller. Analysis of anew error estimate for collocation methods
applied to singular boundary value problems.SIAM J. Numer. Anal., 42(6):2366–2386, 2005.

[9] W. Auzinger, H. Lehner, and E.B. Weinmüller. Defect-based a posteriori error estimation for index-1
DAEs. Submitted toBIT.

c© 2010 European Society of Computational Methods in Sciencesand Engineering (ESCMSE)

A MATLAB Code for Singular BVPs 133

[10] Ch. Buchner and W. Schneider. Explosive crystallization in thin amorphous layers on heat conducting
substrates. InProceedings of the International Heat Transfer Conference, 2010, ISBN: 978-0-7918-
3879-2.

[11] C. J. Budd, O. Koch, and E.B. Weinmüller. Computation of self-similar solution profiles for the
nonlinear Schrödinger equation.Computing, 77:335–346, 2006.

[12] C. J. Budd, O. Koch, and E.B. Weinmüller. From nonlinear PDEs to singular ODEs.Appl. Numer.
Math., 56:413–422, 2006.

[13] J. Cash, G. Kitzhofer, O. Koch, G. Moore, and E.B. Weinm¨uller. Numerical solution of singular
two-point BVPs.JNAIAM J. Numer. Anal. Indust. Appl. Math., 4:129–149, 2009.

[14] M. Gräff, R. Scheidl, H. Troger, and E.B. Weinmüller.An investigation of the complete post-buckling
behavior of axisymmetric spherical shells.ZAMP, 36:803–821, 1985.

[15] N. Hale and D. Moore. A Sixth-Order Extension to the MATLAB bvp4c
of J. Kierzenka and L. Shampine. Techn. Rept. No. NA-08/04, Oxford Uni-
versity Computing Laboratory, Oxford, United Kingdom, 2008. Available at
http://web.comlab.ox.ac.uk//files/720/NA-08-04.pdf.

[16] F.R. de Hoog and R. Weiss. Difference methods for boundary value problems with a singularity of the
first kind. SIAM J. Numer. Anal., 13:775–813, 1976.

[17] F.R. de Hoog and R. Weiss. Collocation methods for singular boundary value problems.SIAM J.
Numer. Anal., 15:198–217, 1978.

[18] F.R. de Hoog and R. Weiss. The numerical solution of boundary value problems with an essential
singularity.SIAM J. Numer. Anal., 16:637–669, 1979.

[19] F.R. de Hoog and R. Weiss. On the boundary value problem for systems of ordinary differential
equations with a singularity of the second kind.SIAM J. Math. Anal., 11:41–60, 1980.

[20] F.R. de Hoog and R. Weiss. The application of Runge-Kutta schemes to singular initial value problems.
Math. Comp., 44:93–103, 1985.

[21] H. Keller. Approximation methods for nonlinear problems with application to two-point boundary
value problems.Math. Comp., 29:464–474, 1975.

[22] J. Kierzenka and L. Shampine. A BVP solver that controlsresidual and error.JNAIAM J. Nu-
mer. Anal. Indust. Appl. Math., 3:27–41, 2008.

[23] G. Kitzhofer. Numerical Treatment of Implicit Singular BVPs. Ph.D. Thesis, Inst. for Anal. and Sci.
Comput., Vienna Univ. of Technology, Austria. In preparation.

[24] G. Kitzhofer, O. Koch, P. Lima, and E.B. Weinmüller. Efficient numerical solution of the density
profile equation in hydrodynamics.J. Sci. Comput., 32:411–424, 2007.

[25] G. Kitzhofer, O. Koch, and E.B. Weinmüller. Pathfollowing for essentially singular boundary value
problems with application to the complex Ginzburg–Landau equation. BIT Numerical Mathematics,
49:141, 2009.

[26] G. Kitzhofer, G. Pulverer, O. Koch, Ch. Simon, and E.B. Weinmüller. BVPSUITE – A
New MATLAB Code for Singular Implicit Boundary Value Problems, 2009. Available at
http://www.math.tuwien.ac.at/∼ewa.

c© 2010 European Society of Computational Methods in Sciencesand Engineering (ESCMSE)

134 G. Kitzhofer et al.

[27] O. Koch. Asymptotically correct error estimation for collocation methods applied to singular boundary
value problems.Numer. Math., 101:143–164, 2005.

[28] O. Koch, R. März, D. Praetorius, and E.B. Weinmüller.Collocation methods for index-1 DAEs with
a singularity of the first kind.Math. Comp., 79:129–149, 2009.

[29] A. Köppl. Anwendung von Ratengleichungen auf anisotherme Kristallisation von Kunststoffen.
Ph. D. Thesis, Vienna Univ. of Technology, Austria, 1990.

[30] A. Köppl, J. Berger, and W. Schneider. Ausbreitungsgeschwindigkeit und Struktur von Kristallisa-
tionswellen. InProceedings of GAMM, Stuttgard, Germany, 1987.

[31] G. Pulverer, G. Söderlind, and E.B. Weinmüller. Automatic grid control in adaptive BVP solvers.
Accepted for Numer. Algorithms.

[32] I. Rachůnková, O. Koch, G. Pulverer, and E.B. Weinmüller. On a singular boundary value problem
arising in the theory of shallow membrane caps.Math. Anal. and Appl., 332:523–541, 2007.

[33] R. D. Russell, and J. Christiansen. Adaptive Mesh Selection Strategies for Solving Boundary Value
Problems.SIAM J. Numer. Anal., 15:59–80, 1978.

[34] L. Shampine and J. Kierzenka. A BVP solver based on residual control and the MATLAB PSE.ACM
Trans. Math. Software, 27:299–315, 2001.

[35] L. Shampine, J. Kierzenka, and M. Reichelt. Solving Boundary Value Problems
for Ordinary Differential Equations in MATLAB with bvp4c, 2000. Available at
ftp://ftp.mathworks.com/pub/doc/papers/bvp/.

[36] L. Shampine, P. Muir, and H. Xu. A User-Friendly FortranBVP Solver,JNAIAM J. Numer. Anal. In-
dust. Appl. Math., 1:201–217, 2006.

[37] Ch. Simon. Numerical Solution of Singular Eigenvalue Value Problems for Systems of ODEs with
a Focus on Problems Posed on Semi-Infinite Intervals. Master’s thesis, Vienna Univ. of Technology,
Vienna, Austria, 2009.

[38] S. Staněk, G. Pulverer, and E.B. Weinmüller. Analysis and numerical solution of positive and dead
core solutions of singular two-point boundary value problems. Comp. Math. Appl., 56:1820-1837,
2008.

[39] S. Staněk, G. Pulverer, and E.B. Weinmüller. Analysis and numerical solution of positive and dead
core solution of singular Sturm-Liouville problems.Adv. Difference Equ., Volume 2010 (2010), Arti-
cle ID 969536, 37 pages, doi:10.1155/2010/969536.

[40] H. J. Stetter. Analysis of Discretization Methods for Ordinary Differential Equations. Springer-Verlag,
Berlin-Heidelberg-New York, 1973.

[41] R. Winkler. Path-following for two-point boundary value problems. Tech. Rept. 78, Department of
Mathematics, Humboldt-University Berlin, Germany, 1985.

c© 2010 European Society of Computational Methods in Sciencesand Engineering (ESCMSE)

