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Abstract: Our aim is to provide the open domainAviLAB codebvpsui t e for the efficient numeri-
cal solution of boundary value problems in ordinary difféial equations. Motivated by applications,
we are especially interested in designing a code whose $eaperopriately wide, including fully im-
plicit problems of mixed orders, parameter dependent prab| problems with unknown parameters,
problems posed on semi-infinite intervals, eigenvalue lprab and differential algebraic equations
of index 1. Our main focus is on singular boundary value motd in which singularities in the dif-
ferential operator arise. We first briefly recapitulate thalgtical properties of singular systems and
the convergence behavior of polynomial collocation used hasic solver in the code for both sin-
gular and regular ordinary differential equations andedéhtial algebraic equations. We also discuss
the a posteriori error estimate and the grid adaptatiotestyamplemented in our code. Finally, we
describe the code structure and present the performanbe ebtle which has been equipped with a
graphical user interface for an easy use.
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Introduction

The codebvpsui t e is designed to solve general implicit mixed order system$béundary value prob-
lems (BVPs) in ordinary differential equations (ODES) sfied in (20)—(21), subject to multi-point bound-
ary conditions. The problem can be posed on a finite intgevadl or on a semi-infinite interve, oo),
wherea > 0. In the latter case the code provides an automatic transfitwmof the semi-infinite interval
to a finite domain. Parameter dependent problems are alke iscope obvpsui t e. We use the pseudo
arclength parametrization to move around turning pointeésolution/parameter path.

For years, special focus of our research has been on thesaahd numerical treatment of ODEs with
time singularities. Therefore, in the introduction, weapitulate the theoretical results available for model
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114 G. Kitzhofer et al.

problems with such singularities. Let us consider the nigaksolution of singular BVPs of the form

0= 200 4 50,20, 101, )
Byz(0) + B1z(1) = 3, (2)

wherea > 1, z is ann-dimensional real function}/ is a smooth x n matrix andf is ann-dimensional
smooth function on a suitable domaii, and B; are constant matrices which are subject to certain re-
strictions for a well-posed problem. (1) is said to featumgryularity of the first kindor o« = 1, while

for « > 1 the problem has aingularity of the second kinélso commonly referred to &ssential singu-
larity. The analytical properties of problem (1)—(2) have beenuwtised in [16], [19] with a special focus
on the most general boundary conditions which guaranteepeskedness of the problem. When analyzing
singular problems, we first note that their direction fieldésy unsmooth, especially close to the singular
point. Consequently, depending on the spectrum of the maf((0), we can encounter unbounded contri-
butions to the solution manifold, such that C(0, 1]. However, irrespective of the eigenvaluesidf0),

by posing proper homogeneous initial conditions, we caarekthe above solution toe C|[0, 1]. It also
turns out that in such a case the conditiai{0)z(0) = 0 must hold. For singular problems the solution’s
smoothness depends not only on the smoothness of the inteoreitgf but also on the size of the real parts
of the eigenvalues af/(0). To compute the numerical solution of (1)—(2) we use polyi@iollocation.
Our decision to use polynomial collocation was motivatedtbydvantageous convergence properties for
(1)-(2), while in the presence of a singularity other higdesrmethods show order reductions and become
inefficient. In [8], [17], and [27] convergence results fallocation applied to problems with a singularity
of the first kind,ac = 1, were shown. The usual high-order superconvergence atéisé points does not
hold in general for singular problems, however, the unifetperconvergence is preserved (up to logarith-
mic factors), see [27] for details.

Motivated by these observations, we have implemented thsept MATLAB code. We stress that for
bvpsui t e one singular point at either endpoint or two singular poattboth endpoints of the interval
of integratiorf are admissible. The program can be applied directly to sindukar BVPs and no pre-
handling is necessary. Otherwise a reformulation of thélera may be necessary, cf. (33) and (34). For
higher efficiency, we provide an estimate of the global earmat adaptive mesh selection. Transformation
of problems posed on semi-infinite intervals to a finite donmaakes the solution of such problems also
accessible to our methods. All these algorithmic compa@ieate been integrated into the code. While the
first version of the codesbvp, solves explicit first order ODEs [5], the present versionpsui t el. 0,

can be applied to arbitrary order problems also in implmitdulation. Consequently, systems of differential
algebraic equations (DAESs) [28] are also in the scope of duec We have also implemented a module
for eigenvalue value problems (EVPs) in which we recast tii€ Bs an appropriately defined BVP. As
already mentioned, a pathfollowing strategy extends tbpeof the code to parameter dependent problems.
For special problem classes, such as singularly perturloetbls, systems of DAES, parameter dependent
problems and EVPs very good and efficient software alreathtseX\We have not performed comparisons
with those codes. However, we assess the propertibgp$ui t e when the code is applied gingular
BVPsby comparing it with other, well-established software foffs in ODEs. Numerical simulation of
relevant applications illustrates the scope and the paidace of the implementation.

3The following equation is a typical model for such a situatio

0 = e HO + 16 20), t€O.1), aras > 1
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A MATLAB Code for Singular BVPs 115

Notation

Throughout the paper, the following notation is used. Focfionsy € CJ0, 1], we define the maximum
norm,

lyll :== ax |y (t)]-

For the numerical analysis, we define meshes

A= (10,T1,-.-,TN), 3)

and
hi =741 -7, Ji:=[m,Tiq1), i=0,...,N—-1, 79=0, 7y =1 4)

For a simpler presentation, we restrict the discussion tidégfant meshes,
hi=h, i=0,...,N—1,

see Figure 1. However, the results also hold for nonunifoeshes which have a limited variation in the

T0 Ti e ———— Tii+1 TN

Figure 1: The computational grid

stepsizes [17]. O\, we define corresponding grid vectors
ua = (ug,...,uy) € RN, (5)
The norm on the space of grid vectors is given by

lualla = max, fucl ©®)

For a continuous functiop € C10, 1], we denote byRa the pointwise projection onto the space of grid
vectors,

Ra(y) :== (y(70),---,y(7n))- (7)
For collocation,m pointst; ;, j = 1,...,m, are inserted in each subintervgl We choose the same
distribution of collocation points in every subintervaiys yielding the (fine) griti
Am:AU{ti’jZTi-l—pjh, iZO,...,N—l,jzl,...,m}, (8)
with
0<pr<pa-- <pm<1 )

In the case where all collocation points are inner point3;0p; < ... < p.,, < 1, we defingp,, 11 := 1.
In the convergence analysis in Section 1, we restrict oueseio grids where; > 0 to avoid a special

treatment of the singular point= 0 [13]. For a gridA™, uam, || - || » andRa~ are defined analogously
to (5)—(7).
4For convenience, we denoteby t; o0 = t;—1,m+1, i = 1,..., N.
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116 G. Kitzhofer et al.

1 Collocation methods

In this section, we discuss collocation with continuousgcpivise polynomial functions of degreem.

Let us denote b, the Banach space of continuous, piecewise polynomialfomeg € P,,, of degree
< m, m € N (mis called thestage ordeiof the method), equipped with the nofp|. As an approximation
for the exact solutionr of (1)—(2), we define an element Bf,, which satisfies the differential equation (1)
at a finite number of points and which is subject to the samadharty conditions. Thus, we are seeking a
functionp(t) = P;(t), t € J;, i =0,...,N — 1, in P, which satisfies

Mt
Pt = 200 ) 4 pt (), (102)
i,
i=0,...,N—1,j=1,...,m,
Bop(0) + Bip(1) = p. (10b)

We consider collocation on grids™ (see (8)), subject to the restrictipn > 0.
In [27] the following convergence result was shown for pewb$ with a singularity of the first kind,
a =1in(10a):

Theorem 1.1 Assume thad/ € C™*2(0, 1], f ism+1 times continuously differentiable jf, 1] x R™ with

% bounded on that domain ard. > m + 2, whereo, is the smallest positive real part of the eigenvalues
of the matrix) (0). Then the collocation schenf&0) has a unique solutiop € P, in a neighborhood

of an isolated solution € C™%2[0, 1] of (1)—(2). This solution can be computed using Newton’s method,
which converges quadratically. Moreover,

lp — 2| = O(n™), (11)
MO o) - 29| = 00, ee o) 12)
ptD) Z(Hl)H = O™ "), k=0,...,m—1, (13)

L M)
)= 22000 ~ .00 = 00m), te . 14)

Note that the conditiom, > m + 2 does not impose a restriction of generality. lbar < m + 2 we
cannot in general guarantee that C™*2 [16], and therefore we cannot expect to observe the desired
convergence orders in this case. Consequently, the téstric, > m + 2 is natural in this context. If
this assumption is not satisfied, we can always transforneduation (1) by letting — ¢, 1 > X > 0,
whences; — o4 /A Thus, as already mentioned, the assumptior> m + 2 imposes no restriction of
generality.

The usual high-order superconvergence at the mesh poietsra hold in general for singular prob-
lems, however, the uniform superconvergence is presemetb(logarithmic factors):

[Ra(p) = Ra(2)]|a = O™ In(h)|" 1), (15)
Ilp = 2| = O™ [ In(R)[*~1), (16)
if o
/SkH(S—pl)dSZO, k=0,...,v—1 a7
0

holds withr > 1, see [8], [27] for details.
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A MATLAB Code for Singular BVPs 117

For problems with an essential singularity, no theoretieallts are known for general high-order col-
location methods. However, we observed experimentallyttieastage orderO(h™) is retained for any
choice of symmetric collocation points. The superconvecgerders for > 1in (17) are

[Ra(p) — Ra(2)]la = O(R™7), (18)
Ip = 2l = O(R™*7), (19)

where0 < v = y(a) < 1, andy decreases with increasigin (1). For non-symmetric collocation points,
we observed rapid divergence of the numerical solution. eEirpental evidence for these propositions is
givenin [7].

The analysis of the box scheme given in [18] implies that ideo of convergence i$ + ~, where
0 < v < 1. Since the box scheme is equivalent to collocation at Gangsoints withm = 1, this is
consistent with the above conjecture.

2 Basic Solver in theMAaTLAB Codebvpsuite

The code is designed to solve systems of differential eqnatof arbitrary mixed order including zé&ro
subject to initial or boundary conditions,

F(t,p1, 05, 21(8), 24 (1), 20 (@), 2 (8), 25 (8), - 20 () = 0,
(20)
B(pl,...,ps,zl(cl),...,zill*l)(cl),...,zn(cl),...,z,(ll"_l)(cl),...,
11—1 n— _
zl(cq),...,zg )(cq),...,zn(cq),...,zg 1)(cq)) = 0,
(21)
where the solution(t) = (z1(t), z2(t), ..., z,(t))T, and the parametegs, i = 1,..., s, are unknown. In

generalt € [a,b] ort € [a,)®, a > 0. Moreover,
F:[a,b] x R® x R x .. x Rl» - R™,

and
B:R* x R% x ... x R¥» — RIS

wherel := Y7 | I;. Note that boundary conditions can be posed on any substivfad pointsc; € [a, b],
a<c << <cg<h

For the numerical treatment, we assume that the boundaug yeibblem (20)—(21) is well-posed and
has a locally unique solution

In order to find a numerical solution of (20)—(21) we introd@cmesh\, partitioning the intervala, b]
as shown in Figure 1. Every subintervalcontainsm collocation points; ; = 7; + pjh, j = 1,...,m,
with

0<pr<p2- < pm<Ll (22)

To avoid a special treatment of the possible singular pgirtsa andt = b, [13], grids withp; > 0 and
pm < 1, €.9. Gaussian points or inner equidistant points, are. uss=d,. be the space of piecewise polyno-
mial functions of degre& r, see Section 1, which are globally continuougirb]. In every subinterval;

we make an ansat?; , € P,,;,—1 for thek-th solution component, k = 1, ..., n, of the problem (20)-
(21). In order to compute the coefficients in the ansatz fanstwe require that (20)—(21) is satisfied exactly
at the collocation points. Moreover, we require that théomaition polynomiap(t) := P;(t), t € J;, is

5This means that differential algebraic equations are algbe scope of the code.
8For the extension to unbounded domains, see Section 5.
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a globally continuous function ofa, ] with components irC%~[a,b], i = 1,...,n, and satisfies the
boundary conditions. All these conditions imply a nonlinsgstem of equations for the unknown coeffi-
cients in the ansatz function. For more details see [3] aB{l [R can be easily seen that the number of
equations in this nonlinear system amount®tmn + NI + s. Every component of the polynomi&} ;,
i=0,...,N=1,k = 1,...,nis characterized by + [;, unknown coefficients, and therefore for every
i the polynomialP; ,, hasnm + [ coefficients to be determined. This together withinknown parameters
adds to a total number of unknowns which is also equatem + ) + s.

For the representation of the collocation polynomiate use the Runge-Kutta basis, see [3], and solve
the resulting nonlinear system for the coefficients in thjgresentation by a Newton iteration implemented
in the subroutine ‘solvaonlinearsys.m’ from the MATLAB codesbvp [5], which is based on the ‘fast
frozen’ Newton method.

3 Error Estimate for the Global Error of the Collocation

Our estimate for the global error of the collocation solntie a classical error estimate based on mesh
halving. In this approach, we compute the collocation sofuat NV points on a gridA with step sizes

h; and denote this approximation b (¢). Subsequently, we choose a second mastwhere in every
interval J; of A we insert two subintervals of length /2. On this mesh, we compute the numerical solution
based on the same collocation scheme to obtain the colhgdatnctionpa, (¢). Using these two quantities,
we define om

m(pm (t) —pa(t)) (23)

as an error estimate for the approximation(¢). Assume that the global erré(t) := pa(t) — z(t) of the
collocation solution can be expressed in terms of the grai@rror functiore(t),

&) =

5(t) = e(th™ +OMTTY), te g, (24)

wheree(t) is independent oAA. This property is known to hold for many standard discreiimamethods,
[33], [40], in case that the analytical solution of the pextlis appropriately smooth. Note that a similar
representation holds for the residual of the collocatiolntgmn [33]. Then obviously the quantit§(t)
satisfies£ (t) — d(t) = O(h™T1). This holds for problems with a singularity of the first kinacefor regular
problems. However, numerical results reported in [6] iathcthat in case of an essential singularity (24)
reads

5(t) = e(h™ +OLI), teJ, (25)

with v < 1. Generally, estimates of the global error based on meslingaivork well for both problems
with a singularity of the first kind and for essentially sitguproblems [6]. Since they are also applica-
ble to higher-order problems and problems in implicit foras for example DAESs) without the need for
modifications, we have implemented this strategy in our dndesui t e.

4 Adaptive Mesh Selection

The mesh selection strategy implementedimsui t e was proposed and investigated in [31]. Most
modern mesh generation techniques in two-point bounddoevaroblems construct a smooth function
mapping a uniform auxiliary grid to the desired nonuniforridg In [31] a new system of control algo-
rithms for constructing a grid density functierit) is described. The local mesh width = 7,41 — 7; is
computed a&; = ex/p;11/2, Whereey = 1/N is the accuracy control parameter correspondinyy te 1
interior points, and the positive sequenize= {(pi+1/2}ij\;61 is a discrete approximation to the continuous
density functionp(t), representing the mesh width variation. Using an errormest, a feedback control
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A MATLAB Code for Singular BVPs 119

law generates a new density from the previous one. Digiter§ilmay be employed to process the error
estimate as well as the density.

For boundary value problems, an adaptive algorithm mustaene the sequend@g”! in terms of prob-
lem or solution properties. True adaptive approaches egitilmite somemonitor function a measure of
the residual or error estimate, over the interval. ®% will depend on the error estimates, which in turn
depend on the distribution of the grid points, the procesmdfng the density becomdéegrative For some
error control criteria a local grid change typically haslidbeffects. The techniques developed here avoid
this difficulty by restricting the error estimates to thoseing the property that the estimated error on the
interval J; only depends on the local mesh width,= en /¢;41/2-

In order to be able to generate the mesh density function,esidd to use the residuglt) to define
the monitor function. The values oft) are available from the substitution of the collocation siolup(t)
into the analytical problem (20)—(21). We first compute

Ti+1
Te(75) + TR(73
Rk(TZ‘+1/2) = / Tk,(t) dt =~ k( ) 5 k( +1)(7‘¢+1 - 7'7;)
fori =0,..., N —1andforeach component, k = 1,...,n, of the residuat. Now, for each subinterval

J;, we calculate

2

Tl+1/2 <2Rk Tit1/2 ) , 1=0,...,N—1,

to obtain the values of the monitor function related to stesivals./;, necessary for the update ®f!.

While the residual based monitor functidt(t) := R(Tiﬂ/g), t € J;, is used to update the mesh
density, the number of necessary mesh points in the final nsedétermined from the requirement that
the absolute global error satisfies the tolerance. The masing routine provides the values of the error
estimate (23) in the entire intervial, b], so we can compute

Gam = m?x(1r<n]§1<x IE(t)]), te A™.

The number of points for the next iteration step is prediftech

Gam \V0HD
O.9TOL>

Nyy1=Ng ( ) (26)
whereN, = 50 is the fixed number of points in the control grid. Below, weafein more detail the grid
adaptation routine implemented in the code.

1. Grid generation, finding the optimal density functiorséparated from mesh refinement, finding the
proper number of mesh points. We first try to provide a goodsitefunction® on a rather coarse
mesh with a fixed number of poinf§, = 50. The mesh density function is chosen to equidistribute
the monitor functionR(¢).

2. For each density profile in the above iteration, we eséntia¢ number of mesh points necessary to
reach the tolerance, according to (26).

3. The calculation of the density function is terminated whg . ; > 0.9N,.. Clearly, it can be expected
that in the course of the optimization of the density funttive number of the associated mesh points
will monotonically decrease. This process is stopped whennext density profileé+11 would
result in saving less than 10% of the mesh points comparéutourrent density profilé!!.
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4. Since the computation of a residual is reasonably cheagwag/s update the density profile to make
use of the information provided by the most recent availabl@erical solution associated with the
function®!!.

5. We finally solve the problem on the mesh base@#étt!! with N*+1 mesh points, and estimate the
global error of this approximation. If the accuracy requisnt is satisfied, we stop the calculations,
otherwise we refine again.

In Figure 2 we illustrate how the mesh adaptation is perfogwrhen it is applied to solve problem
(29)—(30) below fork = 5.

exact solution exact solution
1 ; 1 ! : ;
0.5y 1 0.5/
0 N0
-0.50 1 -0.51
-1 : -1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
t t
N =20 =
NO 50
N=20
. . N=50
N=20 -
C N=50
N=20 .
N=96 N=99

Figure 2: Problem (29)—(30): Steps of the grid adaptatiatedure carried out for collocationat = 4
Gaussian points armbL, = 1076

For more details and the results of numerical tests, we tieéreader to [31].

5 Pathfollowing and Problems on Semi-Infinite Intervals

In this and in the following sections, we discuss the scopbwydsui t e and its special features which
allow to cover a very wide range of applications. First of alir code realizes a pathfollowing strategy to
follow solution branches in dependence of a known param@&tedescribe the strategy in general terms,
we consider (1)—(2) as a parameter-dependent operatoti@yua

F(y; A) =0, (27)
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whereF : Y x R — Z, andY, Z are Banach spaces (of possibly infinite dimension).

Pathfollowing in this general setting has been discusseétail in [41].

We are particularly interested in computing solution breesd” with turning points By definition, in
a turning point the solution of (27) constitutes a local maim (or minimum) of\, and consequently is
not locally unique as a function of the parameteiThe situation is illustrated in Figure 3. There, we plot
some functional of the solution against the paramgtéfhe arrows indicate the turning points. Thus, in a
turning point we cannot parametrizeas a function of\. However, it is sufficient for our procedure that
a tangent is uniquely determined at all pointd'ofThis is guaranteed by realistic assumptions formulated
for our problem in [25].

Now, we proceed by describing our pathfollowing strategy.efplained in [25], our assumptions on the
problem ensure that at a poifak, A\¢) € I', atangent can be uniquely determined up to the sign. Additio
criteria determine how to choose the direction. On the tahiget computed, a predict¢gp, Ap) is chosen
for the computation of the next point &h and finally a corrector equation is solved yieldiag:, A\c). One
step of our procedure starting@b, \o) is illustrated in Figure 3.

/

oY)
oY)

Figure 3: A solution branch with two turning points (lefth@step of the pathfollowing procedure (right).

As one example to demonstrate that our pathfollowing sisatedeed works for singular boundary
value problems and generates meshes adapted to the sqiuiile, in [25] we considered an example
from [14], describing the buckling of a spherical shell.

We followed the solution path’ shown in Figure 4, starting at = 0. Figure 4 shows the maximum
norm of the first solution componentf| - along the pati’. The crosses indicate points Bfwhere
the solution profiles off and the second solution compondntre plotted in Figure 5, together with the
meshes generated by our adaptive mesh selection procefiuwwemparison with [14, Figure 10] shows
that the solution is computed reliably and obviously the lmessare denser where the solution varies more
rapidly.

Our code can also treat problems which are posed on semiténifitervalst € [a, ), a > 0 (and by
a splitting of the interval, also far = 0). In order to exploit our efficient and robust mesh selecsivategy
also in this case, we use the transformatien %, z(t) = x (£) to restate

(1) =1 f(r,x(r)), 7€la,0), B>-1,
as 1
() = —mf(l/t,z(t)), t € (0,1].

This is in general a problem with an essential singularityichr however is in the scope for our collocation
methods, error estimation procedure and adaptive mestenadint. In this approach, the mesh is adapted
only according to the unsmoothness of the solution withoeitieed for mesh grading on long intervals, and
moreover no truncation of the unbounded interval is necgs3dis strategy was employed successfully
for example in [11], [12] and [24].
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lIBIl,,
N

1.2 14

Figure 4: Values of| 5]| . along a solution branch.

6 Code Structure

To install the code, create an empty folder and copy the fillespsui t el. 0. zi p intoit. This archive is
available fromht t p: / / www. mat h. t uwi en. ac. at/ ~ewa. The code has been extensively tested for
the MATLAB versions 7.1-7.2 (R2006a) and needs the Symbolic Math dadtiptimized for Version 3.1)
based on the Maple Engine. This toolbox is only necessarthtbautomatictransformation of problems
posed on the semi-infinite interval to the finite one. Newesiams of MATLAB either do not contain the
Symbolic Math Toolbox or it is based on the MuPAD Engine. Utfoately the syntax differs, so these
versions of the Symbolic Math Toolbox are not compatiblehviite above modules dfvpsui t el. 0.

For computations involving problems posed on finite domaiser versions of MTLAB, e.g. MATLAB
version 7.8 (R2009a), can also be used. For future releddespsui t e it is planned to make the code
compatible with the new engine syntax.

6.1 Filesinthe Package
The packagévpsui t e contains the following m-files
e bvpsuite.m — main routine to start the graphical user iater{GUI).

e equations.m — contains the most important parts of the eadesetting up the nonlinear system of
equations for the Newton solver.

e solvenonlinearsys.m — contains the Newton solver.
e run.m— manages routine calls.

e errorestimate.m — provides error estimates.

(© 2010 European Society of Computational Methods in Sciemcd$€ngineering (ESCMSE)
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0.01 1 2
2 o A—NW g o 1
-0.01 -1 0
0 1 2 3 0 1 2 3 0 1 2 3
t t A=0.99
0.2 1 2
g O —/\/ §’ 0 \/\ 1 ——
-0.2 -1 0
1 2 3 0 1 2 3 0 1 2 3
t t A=0.5072
2
0.2 0.2
s 0 ‘5/ 0 gees o
-0.2 -0.2
0
0 1 2 3 0 1 2 3 0 1 2 3
t t A=0.28077
2
1 0.5 \_/_/\/
g0 ﬁ/ § o 1 o
-1 -0.5 0
0 1 2 3 0 1 2 3 0 1 2 3
t t A=0.091308
g o §, 0 1 otsm—— ot
-2 -1 0
0 1 2 3 0 1 2 3 0 1 2 3
t t A=0.070051
2 2 2
. 0 ~ 1
) = 7 $oes oo 0004 ¢ 0 ¢ 00 ——
= 22 7 0
-4 -1 0
0 1 2 3 0 1 2 3 0 1 2 3
t t A=0.10156

Figure 5: Solution profiles and automatically selected rassit the points marked in Figure 4 along the
solution branch.

e meshadaptation.m — runs the automatic grid control.

e initialmesh.m — provides the initial data for the Newtonveul

e pathfollowing.m — realizes the pathfollowing routine.

e settings.m — opens a window to set parameters.

e shvpset.m — sets the options for the Newton solver.

e EVPmodule.m — carries out the reformulation of an EVP to a BVP

o trafomodule.m — automatically transforms a problem posed semi-infinite intervala, c0), a > 0
to a finite domairo, 1].

¢ backtransf.m — back-transforms the solution to the intdevd] C [a, o0), L large.

(© 2010 European Society of Computational Methods in Sciemcd€Engineering (ESCMSE)



124 G. Kitzhofer et al.

e plotresults.m — provides graphical solution output.
¢ plotrange.m — defines settings for a solution plot on a sebiat|a, L] C [a, o), L large.
e err.m — contains error messages.

More information on the code, input/output parameters,@bidican be found in the manual [26].

7 Code Performance

In this section, we comment on the performance of our dndesui t e when compared to other available
software for the numerical solution of boundary value peof in ordinary differential equations. Since
our focus is on singular boundary value problems, we haveahthose codes which explicitly claim that
singular problems are in their scope. Therefore, we take dohsideration the standardAviLAB code
bvp4c [35] and the related solvels/p5c¢ [22], bvp6c [15], and two FORTRAN codes, BVBOLVER
specified in [36] and COLNEW described in [1] and based on dnie best established BVP solvers
COLSYS [2].

Although the objective of this paper has been to introducecode and describe its scope and features,
we shall have a brief look at holw psui t e performs compared to existing codes. A full code comparison
is a major investigation and is beyond the scope of this papeshall return to this issue in future work.
Thus the test that follows only demonstrates feasibilitamingle problem, and is not claimed to represent
code comparisonissues in full. Indeed, we were ratherdsted to see where there is a potential to improve
the performance and efficiency of thgpsui t e package.

Our main intention while designinigvpsui t e was to provide a MTLAB code which can cope with
a wide range of applications and works dependably and efflgiéor a large range of tolerances with em-
phasis on high-precision solution. Therefore, we haveehdtisefully implicit formulationof the nonlinear
system of equations and nonlinear boundary conditionsSeetion 2. The order of the differential equa-
tions in the components of the system can be arbitrary aferdift for different components. Thus, there
is no need to transform a higher order system to its first diaten. The code can cope with free unknown
parameters for which the appropriate number of additionahldlary conditions are specified at the borders
or within the interval of integration. In its scope are noelar singular boundary value problems with a
singularity of the first or of the second kihdOver the years, we have been able to give a good theoretical
justification for all components of the code, also in the eahbf singular problems, see for instance the
list of publicationsahtt p: / / ww. nat h. t uwi en. ac. at/ ~ewa.
The code can solve index-1 differential algebraic equatiarcoupled system of differential equations and
algebraic constraints. Also, it is equipped with a patlufeihg strategy in case of known parameter val-
ues such that the turning points in the solution/paramegttir go not constitute a difficulty. Recently, we
have equipped the code with modules for the solution of eigjele problems of first and second order, see
the references below. Moreover, for a problem posed on a-sgmite interval[a, o), a > 0 the code
automatically reduces the problem to the interféall] and after numerical computations it provides the
approximate solution transformed back to a suitable irmdéy L], L < oo, with L specified by the user.
The order of the collocation solver is chosen automatidallyependence of the tolerance specified by the
user and varies between two and eight. We stress that sinmaricode Gaussian points (or equidistant
interior collocation points) are used, we avoid the evédueat the singular point and therefore also in the
case of singular problems onbne numerical method on the whole interisalised and no pre-handling is
necessary. In other words, there is no distinction betwieesolution of singular or regular problems with
bvpsui t e. The error estimate and the grid adaptation routine have escribed in Sections 3 and 4,

7and clearly, problems with no singularity
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respectively

The codebvp4c® [34] can solveexplicit nonlinear systems of order ométh nonlinear boundary
conditions and unknown parameters. However, the singutdriems have to show a special structure,

2(t) = %z(t) + f(t,2(t), te(0,7T], (28)

with a constant matrixs. This means that only a singularity of the first kind in thistaular form is in
the scope of the code. The basic solution method is basedlgngmoial collocation with four, five or six
Lobatto points, respectively. Within one routine the ordethe method is fixed to four, five or six. The
quantity to be estimated and controlled is the residualresidiual and error in case bf/p5c [22].

The BVP.SOLVER [36] covers the same class of problems, regular amgukir, asbvp4c. The
methods used here are implicit Runge-Kutta schemes (MIRK@®rders two, four, and six. The code
controls the defect in the differential equations and beupdonditions and also provides an estimate for
the global error using the extrapolation technique.

Finally, COLNEW [1] can solveexplicit nonlinear systems of ordinary differential equations ofexli
order up to four. The basic solver is collocation based ons&ian points whose number ranges from one
to seven. The code controls the global error estimated flemmesh halving principle which in the case
of Gaussian points is strongly related to the residual. im¢hde a pathfollowing strategy is also available
and the code can cope with free parameters.

We compare the performance of the codes by solving the foligivoundary value problem:

, 170 1 0
=3 (2 6) 20+ <4k2t5 sin(k*t?) + 10¢ sin(k2t2)>’ (29)

(8 (1)>z(0)+((1) g)zu):(sin?kz)), 0)

where the analytical solution is known,
2(t) = (% sin(k%t?) , 2k%t* cos(k2t?) + 2t2 sin(k2t%))7.

We have used all the codes with fixed orders four and six andiabla order version dbvpsui t e,
that allows the order to be selected automatically depegnaiirroL, with order varying fron2 to 8, see
curves ‘bvpsuite vo’. All codes have been run for the samer#wice settings and the same number of
points in the initial mesh. The results show that our appngaovides the most efficient solution method.
Therefore the flexibility of our code also constitutes a gigant improvement of the performance. The
model problem (29)—(30) discussed here, gives a typicalipgobserved in many tests.

We investigate the following parameters. First, we cheekttital number of function calls (Figure 6),
then the number of grid points on the final computational ¢(ffigure 7), and finally the CPU time (Figure
8). When the order is fixed to four for comparison, the numberial points required bypvpsui t e and
COLNEW is comparable and smaller throughout tharbfop4c and BVPSOLVER. Especially, for strict
tolerances, the gap betwekwnpsui t e and COLNEW and the other two codes is significant. The sgicte
tolerance successfully reached by the BSBLVER wasl0~'°, and bybvp4c 10~ !, whilebvpsui t e
and COLNEW reached an accuracy ldf~'2. The test also shows that for a wide range of tolerances,
bvpsui t e with the variable order option produces grids with the fevpesnts. The number of function
calls inbvpsui t e can still be reduced, as the global error estimate currémpfemented is a simple
approach using an extra grid with twice as many points asatuabgrid; this will be modified to a strategy

8In the following, we refer tdovp4c only, even when all three variants of the code are addresssading bvp5c [22] and
bvp6c [15].
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where the global error is estimated on the actual grid. Weseixihis to save up to another factor®in

CPU time.
10°— s 10°— =
—=—bvpsuite —=—bhvpsuite
—*—pbvpsuite vo —*bvpsuite vo
® 10°%! bvp4c @ bvp6c
S > colnew S . 4| > colnew
§ bvp_solver § 107y bvp_solver
R g
o 10 o
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S S o boropoEop
2 5107 /_/
c 3 c
2 107 2
2 2
10 \_ \_ \_ \_ \_ \_ \_ 10 \_ \_ \_ \_ \_ \_ \_
10" 10° 10° 107 10° 10" 10" 10* 10° 10° 107 10° 10" 10"
tolerance tolerance

Figure 6: Problem (29)—(30%, = 5: Total number of function calls for the method of order foleft) and

order six (right) plotted as a function obL.

10 ‘ = 10 w =
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10% > *
1 1
10 — — — — — = = 10 — — — — — = =
10" 10° 10° 107 10° 10 10" 10" 10° 10° 107 10° 10" 10"
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G. Kitzhofer et al.

Figure 7: Problem (29)—(30k = 5. Number of grid points used by methods of order four (left) aix
(right) plotted as functions afoL. Note that the variable orddrvpsui t e solves the problem on the
Ny = 50 adaptive control grid for all except the strictest tolersmcThe control algorithms implemented
in the code require the least number of grid points over a nadge of tolerances.
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10 z =
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Figure 8: Problem (29)—(30}, = 5. CPU time used by methods of order four (left) and six (rigidited

as functions ofroL.

Finally, we also investigate the actual error produced mhemde (Figure 9). The latter test suggests
thatbvpsui t e’s automatic order selection can be further improved to anbahe code’s performance. It
is worth mentioning that the BVBOLVER andbvp4c work for this example very well at target, which
means that the required tolerance and the achieved accamacjosely related.

10 ; ;
—=—0rd2
o ord4
5 > ord6
PP e ord8
= 10 ¢ ——varord ||
o
°
=]
£ 107 e
[
£ & b
- *
b g
-15 ) ) ) ) ) ) )
10 -1 -3 -5 -7 -9 -11 -13
10 10 10 10 10 10 10
tolerance

maximal global error

——bvpsuite vo
bvp6c
> colnew
bvp_solver

-13

10

107 10° 10
tolerance

Figure 9: Problem (29)—(30), = 5. Achieved global error for orders two, four, six, eight aratiable or-
derinbvpsui t e (left) and comparison between methods of order six and thahla orderbvpsui t e
(right) plotted as functions ofoL. The graphs indicate that with the new grid generation éalgor,
bvpsui t e’s order selection strategy — not studied yet in detail — majolo conservative, and that further
work on order selection has a potential for enhancing cofitdefcy.

8 Applications

As already mentioned, eigenvalue problems [4], [37] anfedihtial algebraic equations [9], [28], are
within the scope of our code, but it can also be applied in cfs®n-standard singularities. In [32], we
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investigated the following singular equation which origfies from the theory of shallow membrane caps,

/ / 1 a =4\ _
(34 (1)) +t3( o W‘Z) ~ bot? 4)_ 0, te(0,1], (31)

subject to asymptotic boundary conditions

By _
tgr&t u'(t) =0, wu(l)=0,

whereay, by, and~ are given constants. Note that this problem has a more dgatig structure than
(1)—(2). After rewriting (31), we obtain the explicit veosi of the equation,

0 _ bot%*‘*) -0, wu(l)=0. (32)

U,H(t) + — U/(t) + SUT(t) — m

3 1 a
70+ (

Here, a singularity of the first kind occursiat 0, but at the same time due to the boundary condition at
t = 1 the problem has a so-callpthase singularityat the other end of the interval. For such more involved
problems existence and uniqueness of solutions is showndansnof generalized lower and upper func-
tions, involving limiting processes, cf. [32] and referead¢herein. Our codevpsui t e could be used to
approximate solutiosof the membrane problem. However, a theoretical justificator the collocation
method in view of the problem structure is still an open gioest

Another source of challenging problems with an interessnlyition structure are reaction-diffusion
equations, see [38], [39]. In [38], the simple looking, paeter dependent problem of the form

() = ;e (0,1, w(0)=u(l) =1, (33)

where )\ is a given parameter, turns out to have a very challengingtsire. Depending on the value of
A there exist the so-called positive solutiongt) > 0 for all ¢ € [0, 1], pseudo dead core, and dead
core solutions, such that(t) = 0 for a certain point € (0,1), or u(t) = 0 on a certain subinterval
t€la,f],0 < a< B < 1,respectively. In order to find the latter two solutions, \ieidated the problem
numerically usingpvpsui t e. Here, we utilized the fact that the above equation can lagdan its fully
implicit form,

u’ (t)Vu(t)u(t) = Mu(t), te (0,1, u(0)=mu(l)=1. (34)

Clearly, in cases where the analytical problem is espgdialolved, the numerical approach may some-
times constitute the only source of information about tHatg8m structure. We faced this type of difficulty
in [39]. Since the problem is again parameter dependent,ppéea the pathfollowing strategy imple-
mented inbvpsui t e to solve

(' 0)y + 2 = » ( e <u'<t>>2> e, (@)
u'(0) =0, 0.1u(l)+u/(1) = 1. (36)

The results of this simulation are shown in Figure 12. We esntbat for a certain range afthe positive
solution is unique, and for the other part of the path, we @&dind two different positive solutions, see
Figures 10 and 11. According to Figure 12, we have moved arauarning point af =~ 1.8442.

9even thoughu’ (0) may become unbounded
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Figure 10: Problem (35)—(36): The numerical solution, thereestimate and the residual for =
1.42604644036221.
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Figure 11: Problem (35)—(36): The numerical solution, therestimate and the residual for =
1.42139222684689.

Finally, in the last step of the procedure, we obtained atmwlwhich nearly reaches a pseudo dead
core solution with the collocation solutigrf{0) ~ u(0) = 0.

0.6 0.8 1 12 1.4 1.6 1.8

Figure 12: Graph of thdp||/A path obtained in 76 steps of the pathfollowing proceduregrelip|| =

m[ax] |p(t)]. The turning point has been determined\as 1.8442.
te[0,1

Finally, we present a boundary value problem which origiadtom a theory for the explosive crystal-
lization of thin amorphous layers on a substrate [10], [230]. The speed, form and temperature distri-
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bution of a crystallization front propagating through antkdyer of amorphous material on a substrate is
calculated. While the simplified formulation treated haraseful as a demonstration of a problem behavior,
the ultimate aim is to solve a more complicated problem idiclg heat loss into the substrate, and the influ-
ence of said heat loss on the crystallization process. Tigaat problem posed on a semi-infinite interval
7 € [0,00) has been transformed to a finite interva¢ [0, 1] by means of the following transformation
[10]:
1
Jirr

The resulting boundary value problem for a system of two ggns, for the temperature distributi@(¢)
and the the crystallizatiof(t), ¢ € [0,1), reads,

t=1-

280~ €0
/3

e en —gn) (0 -£0))’

() =2 T , (38)

0(0) = 0.1284, O(1) = 1. (39)

Due to the above transformation an essential singularitpigcatt = 1. In this case\ is an unknown
parameter related to the speed of the crystallization ffoiné third condition necessary to close the problem
reflects the fact that at the beginning of the process tingtaty may already exist in the material, and
therefore¢(0) is very small. For the calculations, we usg@) = 10~1°. The results of the numerical
experiment are shown in Figures 13 and 14. It can be seen figuneg=14 that the rather strict tolerances
have been satisfied on a final mesh wi#lg subintervals199 mesh points). Note that due to strict tolerance
requirement, meshes are rather dense on the whole domaippinis accumulate in the region where
the solution varies strongly. The accumulation of pointarie= 1 can be attributed to our deforming
transformation of the independent variable. In the oribiagiable, grid points thin out for large

solution

Figure 13: Problem (37)—(38): Graph of the solution compts®(¢) (blue) ands(t) (green) obtained
from bvpsui t e using collocation withn = 8 Gaussian points antoL, = ToL, = 107'2. Here,
A = 11.03605.
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Figure 14: Problem (37)—(38): Steps of the grid adaptiorc@dore carried out for collocation with = 8
Gaussian points armbL, = ToL, = 1012 (top) and the mesh density function in the final mesh (bottom)
In the meshes shown left only every fifth mesh point is dediateorder to better visualize its location.

9 Conclusions

In this paper we gave an overview of the very intense aawitiarried out for many years at Vienna Uni-
versity of Technology and focused on the analysis, humies@ation and code development for singular
boundary value problems in ordinary differential equagiatifferential algebraic equations, and problems
posed on semi-infinite intervals.

When analyzing singular problems, we first note that the&dion field is very unsmooth, especially
close to the singular point. Consequently, we can encoumigounded contributions to the solution man-
ifold, such thatz: € C(0, 1]. However, irrespective of the spectrum of the mafviX0), by posing proper
homogeneous initial conditions, we can extend the aboweisaltoz € C[0, 1]. It also turns out that in
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such a case the conditid" (0)z(0) = 0 must hold. For singular problems the solution’s smoothuess
pends not only on the smoothness of the inhomogerfdityt also on the size of real parts of the eigenvalues
of M (0).

Concerning the numerical treatment of singular problenmeswsually assumes that the underlying an-
alytical problem is well-posed and has a smooth solutionth@rbasis of such an assumption, one would
like to design a high order method, and error estimate arlagtaptation strategies, which remain unaf-
fected by the steep direction field. This means that the ghidsild become dense only in the regions where
the solution is unsmooth. Especially they should stay @aealsse to the singularity when the solution is
smooth there. It turns out that collocation at Gaussiam(oei equidistant) points remains robust for singu-
lar problems and can serve as a dependable solver in the esidgmdwhile other high order methods suffer
from order reductions. Also, defect correction and mestihglprinciples constitute a reliable basis for the
a posteriori error estimation. We have put a lot of effortia grid adaptation strategy. Here, the main idea
is to split the adaptation of the grid density and the numlbgrid points necessary to satisfy the tolerance
requirements. This idea has proven to be very fruitful asdlte in grids which in a very satisfactory way
reflect the solution behavior.

Finally, we introduced and described in detail our newtJaB solverbvpsui t e and demonstrated
that concerning the scope and efficiency it is a very conipetiandidate among the available software for
singular boundary value problems.
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