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Abstract: B-series, together with the algebraic system which underpins them, are essential

tools in the study of properties of numerical methods for evolutionary problems. This

paper surveys the properties of these constructs and relates the theory to applications in

numerical analysis.
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1 Introduction

B-series are formal series of the form

B(a, y) = a(∅)y +
∑

t∈T

a(t)hr(t)

σ(t)
F (t)(y), (1)

where F (t)(y) is the elementary differential associated with the tree t and the differential equa-
tion y′(x) = f(y(x)) and evaluated at the point y. They were introduced by E. Hairer and G.
Wanner [8] in 1974 and are related to the algebraic structures introduced by the author [1]. If the
elementary differentials do not actually exist, the coefficients a(t) still have a significance and they
still characterise the specific Runge–Kutta method from which they were defined. This paper is a
survey of the algebraic system behind B-series and the relationship between this algebraic system
and numerical methods.

The use of B-series is now well established in numerical analysis and we will include a discussion
of some applications including a new way of looking at the order of singly-implicit methods.

In Section 2 a survey will be given of elementary differentials which form the building blocks
of B-series expansions.
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2 Trees and elementary differentials

The starting point is the set of rooted-trees:

T =

{
. . .

}

We can generate members of T recursively by starting with

τ =

and using the operation [·] defined by the following diagram for [t1t2 · · · tm]

· · ·t1 t2 tm

Thus, the tree t = [t1t2 · · · tm] is formed by introducing a vertex, which serves as the root of t, and
attaching the original roots of t1, t2, . . . , tm to the root of t. If there are repetitions amongst the
ti, it is sometimes convenient to write

t = [tk1

1 tk2

2 · · · tkn

n ].

Examples of this notation are shown in Table 1. It is possible to construct functions on T using
this recursion. The order, defined as the number of vertices and written r(t), satisfies the recursion

r(t) =

{
1, t = τ,
1 + r(t1) + r(t2) + · · · + r(tm), t = [t1t2 · · · tm].

The symmetry, denoted by σ(t) is defined from the recursion

σ(t) =

{
1, t = τ,∏n

i=1 ki!σ(ti)
ki , t = [tk1

1 tk2

2 · · · tkn

n ].

The density, γ(t), is defined by

γ(t) =

{
1, t = τ,
r(t)γ(t1)γ(t2) · · · γ(tm), t = [t1t2 · · · tm].

Given an autonomous initial value problem

y′(x) = f(y(x)), y(x0) = y0,

certain expressions known as “elementary differentials” arise in the study of the Taylor series for
this problem. To construct these quantities, we need to introduce values of f , f ′, f ′′ evaluated at
y(x). Denote these by

f , f
′, f

′′, . . .

The elementary differential F (t)(y0) is defined making use of f , f ′, f ′′, etc with y(x) replaced by y0.

F (t)(y0) =
{

f , t = τ,

f
(m)(F (t1)(y0), F (t2)(y0), . . . , F (tm)(y0)), t = [t1t2 · · · tm].

The various functions that have been introduced are included in Figure 1.
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Table 1: Examples of tree functions

t r(t) σ(t) γ(t) F (t)(y0)
τ 1 1 1 f

[τ ] 2 1 2 f
′
f

[τ2] 3 2 3 f
′′(f , f)

[[τ ]] 3 1 6 f
′
f
′
f

[τ3] 4 6 4 f
′′′(f , f , f)

[τ [τ ]] 4 1 8 f
′′(f , f ′f)

[[τ2]] 4 2 12 f
′
f
′′(f , f)

[[[τ ]]] 4 1 24 f
′
f
′
f
′
f

3 B-series and elementary weights

Recall the formula for B-series (1). The special case in which

a(∅) = 1, a(t) =
1

γ(t)
, t ∈ T,

is of particular interest because it is the Taylor expansion for the exact solution to an initial value
problem.

In the B-series for the result computed by a Runge–Kutta method, a(t) is equal to the “elemen-
tary weight” constructed from the coefficients of the specific method. If the elementary differentials
do not actually exist, the coefficients a(t) still have a significance and they still characterise the
specific Runge–Kutta method from which they were defined.

Given a Runge–Kutta method defined by the tableau

c A
b⊤

,

the corresponding elementary weight Φ(t) for the method and the elementary weight for stage
number i, corresponding to a tree t is given by the recursion

Φi(τ) = ci, i = 1, 2, . . . , s,

Φ(τ) =

s∑

j=1

bj ,

Φi([t1t2 . . . tk]) =

s∑

j=1

aijΦj(t1)Φj(t2) · · ·Φj(tk), i = 1, 2, . . . , s,

Φ([t1t2 . . . tk]) =
s∑

j=1

bjΦj(t1)Φj(t2) · · ·Φj(tk).
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Figure 1: Homomorphisms related to compositions of Runge–Kutta methods
.

The formal Taylor expansion for the solution computed by a Runge–Kutta method, over a
single step of size h, starting from an initial value y(x0) = y0, is found from

B(a, y) = a(∅)y +
∑

t∈T

a(t)hr(t)

σ(t)
F (t)(y),

by substituting a(∅) = 1, a(t) = Φ(t) and y = y0.
However, the coefficients in the formal expansion still have a significance even when the series

does not converge or the terms of the series are not defined.

4 The group of rooted trees mappings

There are several ways in which two Runge–Kutta methods could be regarded as equivalent.
It might be possible, for example, to delete irrelevant or duplicated stages from a method to

yield a simpler “reduced” method. If two methods both reduce to the same method, although
possibly with their stages re-ordered, they are equivalent in this obvious sense.

This implies, and is also implied by, the fact that, for any Lipschitz continuous problem, they
yield identical numerical results, for sufficiently small stepsizes. It is possible to show, by a recursive
argument, that the elementary weight Φ(t), for any specific tree t, has the same value for each of
two equivalent methods. This yields a third way of looking at equivalence because the mapping
from trees to elementary weights characterises the Runge–Kutta method to within its equivalence
class.

By using equivalence classes, the semigroup of Runge–Kutta tableaux, under the composition
operation, can be used to form a group. For a Runge–Kutta method R, denote the equivalence
class which contains it by [R]. It can be shown that the mapping R 7→ [R] is a homomorphism so
that [R1][R2] = [R1R2].

Furthermore, this group is homomorphic to the set of all mappings from trees to real numbers,
with the group operation to be described below. The relationship between these various structures
is shown schematically in Figure 1. Let G denote the set of mappings from T to R. Let a, b
denote two members of G. Our aim now is to describe the group operation which gives the value
of (ab)(t) for every t ∈ T . For a given tree t let P (t) denote the set of prunings of t. A pruning of
t is represented by a subtree t̃, which shares the same root as t. Let the set of trees formed from
the parts of t left over, when t̃ is removed from t, be denoted by t \ t̃.

c© 2010 European Society of Computational Methods in Sciences and Engineering (ESCMSE)
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Table 2: Example of tree prunings

Pruning t̃ t \ t̃

The value of â(t \ t̃) is defined as the product of a(u) over each of the subtrees u in t \ t̃. This
is illustrated in Table 2, using a particular tree t of order 5. The target tree t also appears in the
table, from the trivial pruning for which t̃ = t.

To find the formula for (ab)(t), the value of a(t) is added to the sum, over all prunings, of
â(t \ t̃) b(t̃). An alternative formula for (ab)(t) was given in [1] and in a simplified form in [4] and
[5].

For a ∈ G and t ∈ T , write t̂(a) = a(t). Also write 1(a) = 1. Let T̂ denote the span of

{1, τ̂ , [̂τ ], . . . }. If t = [t1t2 · · · tm], write

t̂ = [t̂1t̂2 · · · t̂m]

and generalise this appropriately when the t̂i (i = 1, 2, . . . ,m) are replaced by members of T̂ .

Introduce a function Λ(a, t) ∈ T̂ such that

(ab)(t) = Λ(a, t)(b).

Then Λ satisfies the following recursion:

Λ(a, t) =

{
a(τ) + τ̂ , t = τ,
a(t) + [Λ(a, t1)Λ(a, t2) · · ·Λ(a, tm)], t = [t1t2 · · · tm].

The product (a, b) 7→ ab defined in this way is known to be associative and to satisfy the group
axioms. It can be extended to a two-operation algebra by allowing b(∅) to have a value other than
1 and admitting vector space operations. It is known to be closely related to the Hopf algebra of
Connes and Kreimer [6].

5 Applications in numerical analysis

The standard application is the order conditions for Runge–Kutta methods.

c© 2010 European Society of Computational Methods in Sciences and Engineering (ESCMSE)
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We obtain these conditions by equating the B-series coefficients for a single step of the method,
with the limiting method in which the set of stage indices is replaced by the interval [0, 1], the
matrix A is replaced by the integration operator

Y (x) 7→

∫ x

0

Y (x)dx, (2)

and b⊤ is replaced by the functional

Y (x) 7→

∫ 1

0

Y (x)dx. (3)

The B-series coefficients are then given by

Φ̃x(τ) = x,

Φ̃(τ) = 1,

Φ̃x([t1t2 . . . tk]) =

∫ x

0

k∏

j=1

Φ̃x(tj)dx,

Φ̃([t1t2 . . . tk]) =

∫ 1

0

k∏

j=1

Φ̃x(tj)dx.

A simple recursion argument shows that Φ̃x = xr(t)/γ(t), Φ̃ = 1/γ(t) and the order p conditions
Φ(t) = 1/γ(t) (for r(t) ≤ p) immediately follow.

As a second application we consider the conditions for effective order p, which can be expressed
using the group product. Let α be the group element for a specific Runge–Kutta method, whose
order conditions are sought, and let β be the group element for a method used to perturb the
solution. Also let E be the group element for the exact solution. That is, E(t) = γ(t)−1.

Then the Runge–Kutta method corresponding to α has effective order p if and only if β exists
such that βα = Eβ, up to all trees up to order p. This criterion can be generalised to the condition
for a general linear method to have order p.

A final application is to the order conditions for a singly-implicit Runge–Kutta method. Write
the tableau for this method in one of the forms

c + γ1 A + γI
b⊤

(4)

c + γ1 A + γI
b⊤ + γe⊤

s
. (5)

The formulation (5) would be used for methods designed so that b⊤ = e⊤

s A, with the aim
of making the stability function vanish at infinity, in contrast to (4), for which there is no such
requirement.

For each of these methods, the elementary weights are calculated from the tableau

c A
b⊤

.

and we will write the order conditions in the form

Φ(t) = Φ̃(t, γ).

c© 2010 European Society of Computational Methods in Sciences and Engineering (ESCMSE)
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Table 3: Modified right-hand sides for singly-implicit order conditions

t Φ̃x(t, γ) Φ̃(t, γ)

x − γ 1

1
2x2 − 2γx + γ2 1

2 − γ

1
3x3 − 2γx2 + 3γ2x − 4

3γ3 1
3 − γ + γ2

1
6x3 − 3

2γx2 + 3γ2x − γ3 1
6 − γ + γ2

1
4x4 − 2γx3 + 9

2γ2x2 − 4γ3x + 5
4γ4 1

4 − γ + 3
2γ2 − γ3

1
8x4 − 4

3γx3 + 4γ2x2 − 4γ3x + γ4 1
8 − 5

6γ + 3
2γ2 − γ3

1
12x4 − γx3 + 7

2γ2x2 − 13
3 γ3x + 4

3γ4 1
12 − 2

3γ + 3
2γ2 − 4

3γ3

1
24x4 − 2

3γx3 + 3γ2x2 − 4γ3x + γ4 1
24 − 1

2γ + 3
2γ2 − γ3

The values of Φ̃(t, γ) are based on modifying the linear operator which represents A from (2)
to

Y (x) 7→

∫ x

0

Y (x)dx − γY (x).

For method (4), (3), which represents b⊤, is retained unchanged. However, for (5), this is

replaced by Y (x) 7→
∫ 1

0
Y (x)dx − γY (1).

We can now define Φ̃(t, γ) in the case of (4) recursively as follows:

Φ̃x(τ, γ) = x − γ,

Φ̃(τ, γ) = 1,

Φ̃x([t1t2 . . . tk], γ) =

∫ x

0

k∏

j=1

Φ̃x(tj , γ)dx − γ

k∏

j=1

Φ̃x(tj , γ),

Φ̃([t1t2 . . . tk], γ) =

∫ 1

0

k∏

j=1

Φ̃x(tj , γ)dx.

In the case of method (5), we see that Φ̃(t, γ) = Φ̃1(t, γ) The values of Φ̃x(t, γ) and Φ̃(t, γ) up
to order 4 are shown in Table 3.

6 Some remarkable Runge–Kutta methods

The first method of order six seems to have been constructed by A. Huťa [9], who decided to seek
a method with 8 stages because he had 31 order conditions to satisfy and 7 stages would give only
28 free parameters compared with 36 parameters available with 8 stages.

His method made extensive use of what are now called “simplifying assumptions”, but even so,
his derivation required intricate manipulations with some formulae filling two and a half pages.

c© 2010 European Society of Computational Methods in Sciences and Engineering (ESCMSE)
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If Huťa had known about order conditions for non-scalar differential equations he would have
known that there should have been 37 conditions instead of just 31. Therefore he would probably
have assumed that 9 stages would have been necessary.

Surprisingly, his method satisfying the 31 conditions for scalar problems also satisfies the 6
additional conditions for systems of equations [3] Thus he had magically satisfied 37 conditions in
36 unknowns. Even more surprisingly, 6th order methods exist with only 7 stages! This means
satisfying the 37 conditions in only 28 unknowns.

According to the theory for scalar differential equations, there are 16 conditions for order 5
but, for vector based differential equations, there are 17 conditions. The reason is that the two
elementary differentials

f
′′(f , f ′f ′f) and f

′
f
′′(f , f ′f)

correspond to identical terms

(ffyy + fxy)fy(ffy + fx)

in the scalar theory.
The consequence is a confusion of two order conditions

∑
biciaijajkck = 1

30 and
∑

biaijcjajkck =
1
40 which are replaced by the single condition

∑
biciaijajkck +

∑
biaijcjajkck = 1

30 + 1
40 . (6)

In a short 1995 paper [2] it is shown how to construct a method which satisfies all the equations
for order 5 in the scalar theory but not for the vector theory.

A new method satisfying the same requirements is given by the tableau

0
1
10

1
10

1
5

11
260

41
260

3
10 − 3

170
63
340

9
68

3
4

13035
544 − 75447

1088
9009
136 − 1287

64

1 − 165709
918

733747
1326 − 638689

1122
32053
162 − 5320

11583
5
54 0 0 250

567
32
81

1
14

For this method, all order 5 conditions are satisfied except those appearing in (6), which are
replaced by

∑
biciaijajkck = 1

30 − 127
20800 ,

∑
biaijcjajkck = 1

40 + 127
20800 ,

so that (6) is still satisfied.
A suitable single differential equation to test the order of convergence of this method, together

with a closely related autonomous system, are

dy

dx
=

y − x

y + x
, y(0) = 1, (7)

d

dt

[
y
x

]
=

1√
x2 + y2

[
y − x
y + x

]
,

[
y(1)
x(1)

]
=

[
1
0

]
. (8)
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Figure 2: Solutions to (7) and (8)

Table 4: Numerical verification of order behaviour

n = 20 n = 40 n = 80 n = 160 n = 320

E
(0)
n /E

(0)
2n 33.5068 33.0459 32.8983 32.5659 32.4374

E
(1)
n /E

(1)
2n 13.4076 14.8227 15.4446 15.7309 15.8740

E
(2)
n /E

(2)
2n 14.8548 15.5186 15.7833 15.8971 15.9678

The solution of (7), written in parametric coordinates, is

x = t sin(ln(t)), (9)

y = t cos(ln(t)), (10)

and this is exactly the solution to (8).

In numerical tests, we will approximate the solution when t = x = exp(π/2), y = 0. The
solution on the interval t ∈ [0, exp(π/2)] is shown in Figure 2.

In two experiments, the same method was used to solve each of the problems and to find the
absolute values of the computational errors in y(exp(π/2)), found by solving (1) for a range of
values of n, the number of equally spaced steps.

Denote this quantity by E
(0)
n . Similarly, using the formulation (2), quantities E

(1)
n and E

(2)
n are

computed as the absolute values of the errors for the two components y(exp(π/2)) and x(exp(π/2))
respectively.

Our purpose is to assess the rate of convergence as n increases and it is appropriate to calculate

E
(i)
n /E

(i)
2n for i = 0, 1, 2. If the orders are as claimed in this paper, the values of these ratios for

i = 0 should become close to 32 as n increases and for i = 1 and i = 2, they should approximate
16.

The actual values are given in Table 4 for values of n from 20 up to 320, in powers of 2, and
the claim concerning orders is supported by these results.

Finally, a discussion of interesting Runge–Kutta methods, would not be complete without a
mention of the 17 stage tenth order method constructed in 1978 by E. Hairer [7]. A recurring
theme in the construction of high order methods is the use of simplifying assumptions. This
method makes use of such assumptions adapted and combined in an ingenious way to form the
ideal structure on which to build this method. It is unknown how many stages are required for

c© 2010 European Society of Computational Methods in Sciences and Engineering (ESCMSE)
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order eight and it may well be the case that the Hairer method is optimal in this respect but no
proof is known and there seems to be little prospect of finding a similar method with fewer stages.
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numérique des équations différentielles du premier ordre, Acta Fac. Nat. Univ. Comenian.

Math. 1 (1956), 201–224.

c© 2010 European Society of Computational Methods in Sciences and Engineering (ESCMSE)


