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Abstract: In this paper we propose the use of a local image transformation involving radial
basis functions for landmark-based registration of medical images. More precisely, we
consider radial basis functions as nodal functions in the modified Shepard method. In this
way we obtain an image transformation more accurate and stable than the one given by
the global radial basis functions, as shown by numerical results.
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1 Introduction

The problem of image registration consists in finding a transformation which gives accurate match-
ing of two or more images. In general, one of the images is viewed as a source image and the other
one as a deformable target image.

In applications a transformation function h : Rd → Rd, where d is the image dimension, e.g.
d = 2, 3, for 2D and 3D images, respectively, is reached. The basic idea is to determine the
transformation such that each landmark of the source image is mapped onto the corresponding

1Published electronically December 30, 2010
2E-mail: roberto.cavoretto@unito.it
3Corresponding author. E-mail: alessandra.derossi@unito.it
4E-mail: Bernhard.Quatember@uibk.ac.at



142 R. Cavoretto et al.

landmark of the target image (see [15, 17, 18, 20, 21]). This problem can be formulated in the
context of multidimensional interpolation on scattered data, and solved using the radial basis
function (RBF) method (see [7, 11, 23] for an exhaustive presentation of the method). Among the
several proposed methods, RBF is the most suitable when the number of points to be interpolated is
small (as is typically the case with manually placed landmarks). The use of RBF transformations
for point–based image registration, and in particular of the thin plate spline (TPS), was first
proposed by Bookstein [6], and it is still common (see the recent paper [19] and the software
package MIPAV [16]). The thin plate spline yields minimal bending energy properties, so that the
result is an overall smooth deformation. On the other hand, RBFs have a global support when
used to obtain a global transformation. Therefore, a single landmark pair change influences the
whole registration result, while if deformations are rather local a limited influence to some image
parts is desired. Some methods were presented to circumvent this disadvantage, as, for instance,
the use of radial basis functions with compact support [12], the weakening of the interpolation
conditions [10], the introduction of a new class of elastic body splines [13], and the employment of
the Lobachevsky splines [3]. However, it is well known in the literature that radial basis functions
with compact support are less accurate than radial basis functions with global support, while
considering approximation instead of interpolation, in particular when the number of points is
small, does not always assure good results (see for instance [11]). On the other hand the class
of elastic body splines is, as far as we know, under investigation, since the optimal choice of the
parameter involved in the scheme requires further mathematical and experimental analysis (see
[13], p. 274).

In this paper we propose the employment of a modified Shepard method, which uses radial basis
functions as nodal functions (a first sketch of the technique was presented in [8]); this modification
gives rise to a local interpolation method. Shepard method is one of the most commonly used
techniques for scattered data interpolation, also known in literature as Inverse Distance Weighted
or Cardinal Radial Basis interpolation methods (see, for instance, [2, 4, 23] and references therein).
The local scheme is well known in approximation theory (see, for example, [4, 14]), but, as far as
we know, never used in the image registration context. Moreover, this approach can be applied for
the registration of 2D and 3D tomographic images (MR, CT).

The paper is organized as follows. In section 2 some preliminary definitions and the mathe-
matical formulation of the landmark-based registration problem are given. We briefly recall radial
basis function transformations in section 3, and in section 4 thin plate spline transformations. Sec-
tion 5 is devoted to formulate the local radial basis function transformation technique, giving the
corresponding transformation algorithm in section 6. Finally, section 7 contains some numerical
results obtained for some test cases, and section 8 the concluding remarks and future work.

2 Landmark-Based Registration Problem

Let S = {xS
i , i = 1, . . . , n} and T = {xT

i , i = 1, . . . , n} be two sets each containing n point-
landmarks in the source image and in the target image, respectively. The registration problem
reads as follows.

Problem 1. Find a continuous transformation h : Rd → Rd within a suitable Hilbert space H
of admissible functions, such that

h(xS
i ) = xT

i , i = 1, . . . , n. (1)

Each coordinate of the transformation function is often calculated separately, i.e. the interpo-
lation problem hk : Rd → R is solved for each coordinate k = 1, . . . , d, with the corresponding
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conditions hk(x
S
i ) = xT

i,k, i = 1, . . . , n.
We give also some preliminary definitions, following [15].

Definition 1. An image transformation is called rigid when only translations and rotations
are allowed. If the transformation maps parallel lines onto parallel lines, it is called affine. If it
maps lines onto lines, it is called projective. Finally, if it maps lines onto curves, it is called elastic.

Definition 2. An image transfomation is called global if it applies to the entire image, and
local if each subsection of the image has its own transformation defined.

In this paper we will consider a local transformation method for elastic image registration.

3 Radial Basis Function Transformations

Applying a radial basis function approach, the general coordinate of the transformation function
hk(x), k = 1, . . . d, (in the following, we write for simplicity h(x) instead of hk(x)) is assumed to
have the form

h(x) = φ(x) + p(x), (2)

where φ is a radial basis function spanning an n-dimensional space of functions depending only on
the source landmarks xS

i , and p ∈ Pd
m−1 ≡ Pm−1(Rd), i.e. p is a sum of polynomials up to degree

m− 1. The space Pd
m−1 = span{πk}Mk=1 has dimension M = (d+m− 1)!/(d!(m− 1)!), which must

be lower than n. This condition determines the minimum number of landmarks. We can rewrite
(2) in the extended form

h(x) =

n∑
i=1

ciΦ(||x− xS
i ||) +

M∑
j=1

ajπj(x), (3)

where ||x−xS
i || = ||r|| is the Euclidean distance from x to xS

i , Φ(r) = Φ(||r||), a function depending
only on the distance, and ci and aj are coefficients.

To compute the coefficients a = (a1, . . . , aM )T and c = (c1, . . . , cn)
T in (3), the following system

of linear equations needs to be solved:

Kc+Pa = v

PT c = 0,
(4)

where K = {Φ(||xS
j −xS

i ||)} is a n×n matrix, P = {πj(x
S
i )} is a n×M matrix, and v denotes the

column vector of the k-th coordinate of the target points xT
i . It is obtained by requiring that h

satisfies the interpolation conditions and the side conditions
∑n

i=1 ciπj(x
S
i ) = 0, for j = 1, . . . ,M .

The equation PT c = 0 represents the boundary conditions.
The most popular choices for Φ are given in Table 1.

Among them, thin plate spline, Gaussians and multiquadrics are very suitable for image regis-
tration. To solve for the coefficients aj and ci in (4) for all possible sets of landmarks, it is required
that the linear system be non-singular. The polynomial part of h is necessary to guarantee the
non-singularity when Φ is the thin plate spline or the multiquadric. The matrix of the linear system
is in general dense, since the functions do not have compact support, and are ill-conditioned. This
happens also in image registration applications, even if the RBF transformations work only on a
relatively small number of points to be interpolated.
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Radial Basis Function Expression

Linear r

Gaussians e−βr2 , β > 0
Thin plate spline r2m−d log r, 2m− d ∈ 2N
Multiquadrics (r2 + γ2)1/2, γ > 0

Inverse Multiquadrics (r2 + γ2)−1/2, γ > 0

Table 1: Radial basis functions Φ(r).

4 Thin Plate Spline Transformations

The thin plate spline interpolation problem consists in finding a continuous transformation h :
Rd → Rd within a suitable Hilbert space H of admissible functions, which minimizes a given
functional J : H → R and satisfies the interpolation conditions (1).

The minimizing functional represents the bending energy of a thin plate separately for each
component hk, k = 1, . . . , d, of the transformation h. Thus, the functional J(h) can be separated
into a sum of similar functionals that only depend on one component hk of h, and the problem of
finding h can be decomposed into d problems.

In the case of d-dimensional images and for an arbitrary order m of derivatives in the functional
we have

Jd
m(h) =

d∑
k=1

Jd
m(hk),

where the single functionals read as

Jd
m(h) =

∑
α1+···+αd=m

m!

α1! · · ·αd!

∫
Rd

(
∂mh

∂xα1
1 · · · ∂xαd

d

)2

dx (5)

with αk being positive integers. The functional is invariant under affine transformations like scaling,
rotation and translation. This property makes it particularly suitable to provide a quantitative
measure of deformations.

The solution of minimizing the functional (5) can be written in the analytic form (3). In
particular, if we take the space of functions on Rd for which all partial derivatives of total order
m are square integrable (i.e. are in L2(Rd)) as Sobolev space, we obtain the kernel

Φ(||x− xS
i ||) =

{
θm,d

∣∣∣∣x− xS
i

∣∣∣∣2m−d
ln
∣∣∣∣x− xS

i

∣∣∣∣ , 2m− d ∈ 2N,
θm,d

∣∣∣∣x− xS
i

∣∣∣∣2m−d
, otherwise,

with θm,d as defined in [22].

5 Local Radial Basis Function Transformations

In this section we describe a local transformation method for landmark–based registration. It
consists of a local Shepard method, also known as modified Shepard method in the multivariate
interpolation context (see e.g. [4, 14]). The approach we propose exploits the characteristic of the
classical Shepard formula combined with local RBF interpolants and localizing functions. This
special transformation scheme is a flexible and powerful mathematical tool for scattered data
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interpolation and allows to overcome some drawbacks due to the classical Shepard formula and
RBF method, such as inaccuracy, unstability and global support.

Let us consider the following definition of the modified Shepard method formulated in the
context of image registration.

Definition 3. Given a set of source landmark points S = {xS
i , i = 1, . . . , n}, arbitrarily

distributed in a domain D ⊂ Rd, with associated the corresponding set of target landmark points
T = {xT

i , i = 1, . . . , n} in D, a modified Shepard transformation H : Rd → Rd is such that each
component takes the form

Hk(x) =

n∑
j=1

Qk
j (x)W̄

k
j (x), k = 1, . . . , d,

where the nodal functions Qk
j (x), j = 1, . . . , n, are local approximants in xS

j relative to the subset

Nj = {xS
i ∈ S, i ∈ Ij},

Ij being the set of indices of nQ neighbours of xS
j , and W̄ k

j (x), j = 1, . . . , n, are the weight functions
defined as follows

W̄ k
j (x) =

W k
j (x)∑n

u=1 W
k
u (x)

, j = 1, . . . , n,

with

W k
j (x) = τj(||x− xS

j ||)/α(||x− xS
j ||),

τj(||x − xS
j ||) being a nonnegative real localizing function with compact support, called the step

function, and α the radial basis function α(||x − xS
j ||) = ||x − xS

j ||2, where || · || is the Euclidean
distance. Note that the transformation H (or, equivalently, each component Hk, k = 1, . . . , d) is
evaluated at x considering only a certain number of landmarks closest to x. We denote by nW this
number of landmarks.

In the bivariate case, denoting by (u, v) a general point in R2, the simplest case of the step
function is

τ(||(u, v)− (ui, vi)||) =
{

1 (ui, vi) ∈ [u− δ, u+ δ]× [v − ϵ, v + ϵ],
0 otherwise,

depending on values of δ and ϵ, with δ, ϵ > 0. In general, it identifies a local rectangular (square,
if δ = ϵ) neighborhood, but other possible choices are admissible or even better.

The influence of the approximant Qk
j is then limited by a weight function which decreases with

the inverse of the distance from xS
j . A suitable choice for the local approximants Qk

j is given by
radial basis functions.

6 Local Radial Basis Function Transformation Algorithm

The transformation algorithm can be briefly described as follows:

For each evaluation point y ∈ Y
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Step 1. Construct a local neighborhood, whose size depends on the sample dimension n in the
domain D.

Step 2. Search and order all the data points belonging to a neighborhood by a distance-based
sorting procedure.

Step 3. Reduce the number of data points to be interpolated to nW , for each neighborhood.

Step 4. Find a RBF interpolant, computed using nQ points, taking into account only the closest
points nW to y.

Step 5. Evaluate H(y) by applying the modified Shepard formula.

The choice of the local (square) neighborhood size is carried out automatically in relation to the
sample dimension n. Supposing to have a uniform distribution of points throughout the domain
D, each local neighborhood contains a prefixed number of points. The condition is satisfied, taking
into account the sample dimension n; this allows us to introduce a rule, which connects the half-size
δ of a square neighborhood and the dimension n, i.e. δ = w/

√
n, where w is a suitably chosen

real number. Note that the value of w expresses the density of points that are contained in each
neighborhood.

7 Numerical Results

In this section we show the applicability of the local transformation algorithm, referring to examples
in [12] and [13] which concern the registration of elastic images. With regard to rigid or affine
registration techniques in which we have rigid objects embedded in elastic material changing their
position or form, the approach we propose can cope with local differences between corresponding
images. In general, these differences are caused by the physical deformation of human tissue due
to surgeries or pathological processes such as tumor growth or tumor resection.

7.1 Test Case 1

These examples simulate typical medical cases, where image portions shift and either shrink or
grow. The grids are transformed using 32 landmarks and, in the case of square shift, also 4 quasi–
landmarks to prevent an overall shift. The source and target image landmarks, both shown in
the left images in Fig. 1 and Fig. 2, are marked by a circle (◦) and a star (⋆), respectively.
In these cases we obtain better results using Gaussian interpolants. The center images show the
registration results using Gaussian with β = 1. The right images are obtained employing the local
transformation algorithm with nQ = nW = 10, for the modified Shepard method, and β = 1 for
the Gaussian.

7.2 Test Case 2

In the following, we consider two simple models for the expansion and the resection of a tumor in
surrounding elastic brain tissue (see Fig. 3). In our models the outer circle corresponds to the skull
bone, which is assumed to be rigid. The inner circle represents the boundary of the tumor, whereas
the space between the inner and the outer circle is assumed to be filled with elastic material, which
corresponds to brain tissue.

In these experiments we compare the registration results obtained by using the local Shepard
method with TPSs as nodal functions, and the global TPS method.

The grids are transformed using 20 equidistant landmarks placed on the inner circle and, to
prevent an overall shift, also 40 quasi–landmarks, i.e. landmarks at invariant positions, at the outer
circle in the source and target images. These point–landmarks, both shown in the left images in Fig.
4 and Fig. 5, are marked by a circle (◦) and a star (⋆), respectively. The center images show the
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Figure 1: Shift of a square: 32 source and target landmarks and 4 quasi–landmarks (left), regis-
tration results using Gaussian (center) and local Gaussian–Shepard method (right).
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Figure 2: Scaling of a square: 32 source and target landmarks (left), registration results using
Gaussian (center) and local Gaussian–Shepard method (right).

registration results using TPS. The right images are obtained employing the local transformation
algorithm, that is, the modified Shepard method.

Quantitative graphics for the accuracy of the registration results are shown in Fig. 6 and
Fig. 7. Here, we present the maximum absolute errors (MAEs) and the root mean squares errors
(RMSEs), obtained by applying the local Shepard method, varying the parameters nQ and nW .
These errors are found computing the distances between the displacements of grid points y ∈ Y
and the values of the modified Shepard formula H(y). They assume the following form

MAE = max
y∈Y

∥y −H(y)∥ ,

RMSE =

√√√√∑
y∈Y ∥y −H(y)∥2∑

y∈Y 1
,

where ∥·∥ is the Euclidean norm.
Thus, exploiting the analysis of errors in Fig. 6 and Fig. 7, we can take “optimal” values

for nQ and nW and compare the registration results, obtained by applying global and local RBF
approaches. Their comparison points out the goodness and the effectiveness of our local method.
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Figure 3: Models of an expanding tumor (left) and a tumor resection (right).

In the tumor expansion model, considering nQ = 3 and nW = 6 for the modified Shepard
method, we have a MAE = 1.2936E− 1 and a RMSE = 5.1378E− 2, whereas the global method
produces a MAE = 1.2485E− 1 and a RMSE = 6.2301E− 2. Conversely, in the tumor resection
model the local method (with nQ = 6 and nW = 9) yields a MAE = 1.0159E− 1 and a RMSE =
4.3550E− 2, while the global one gives a MAE = 1.7681E− 1 and a RMSE = 7.9885E− 2.

8 Concluding Remarks and Future Work

We presented a local transformation method and the relative algorithm for landmark-based reg-
istration of medical images. It is based on a local interpolation method, which is a mathematical
tool well known in approximation theory but, as far as we know, never used in this context.

Numerical results show its efficiency in some test cases: root mean square and maximum
absolute errors are comparable and often better than those obtained with the global approach.
Moreover, in the transformed images the deformations are limited. The registration results we
obtained point out that the local transformation technique compares well with the global one, and
in some cases it is superior. In particular, the former is preferable when the number of landmarks
is large, since its main features are the locality and the stability. The drawback of this technique
is the need of a manual determination of the local parameters nQ and nW . An automatic choice
would be desirable and is currently under investigation. However an appropriate selection of the
optimal values for the localization parameters nQ and nW , justified by extensive experimental
tests, should be made taking nQ = 10, nW = 10, when the landmarks are situated in a small
portion of the image, and in the ranges nQ = 3 ÷ 6, nW = 6 ÷ 9, when the landmarks are on a
large portion of the image.

Furthermore, we are also performing numerical experiments concerning the registration of 2D
tomographic images.
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Figure 4: Expansion of a tumor: 20 source and target landmarks and 40 quasi–landmarks (left),
registration results obtained by using global TPS (center) and local TPS–Shepard method with
nQ = 6 and nW = 9 (right).
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Figure 5: Resection of a tumor: 20 source and target landmarks and 40 quasi–landmarks (left),
registration results obtained by using global TPS (center) and local TPS–Shepard method with
nQ = 3 and nW = 6 (right).
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