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Abstract: In this paper, we prove that, for a given positive number d, if every n + 1 of
a collection of compact convex sets in IEn contain a set of width d (a set of constant
width d, respectively) simultaneously, then all members of this collection contain a set
of constant width d1 simultaneously, where d1 = d/

√
n if n is odd and d1 = d

√
n+ 2/

(n+ 1) if n is even (d1 = 2d− d
√

2n/(n+ 1), respectively). This set is called common set
(of constant width d1) of the collection. These results deal with an open question raised
by Buchman and Valentine in [Croft, Falconer and Guy, Unsolved Problems in Geometry,
Springer-Verlag New York, Inc. 1991, pp. 131-132]. Moreover, given an oracle which
accepts n+ 1 sets of a collection of compact convex sets in IEn and either returns a set of
width d (a set of constant width d) contained in these sets, or reports its non-existence,
we present an algorithm which determines a common set of the collection.

c© 2008 European Society of Computational Methods in Sciences and Engineering

Keywords: Helly’s theorem; set of width; set of constant width

Mathematics Subject Classification: 52A01

1 Introduction

Helly’s theorem states that if F is a collection of convex sets in the n-dimensional Euclidean space
IEn with the property that any n + 1 have a common point, then all of F have a common point.
The theorem has given rise to a vast number of variants and generalizations, known as Helly-type
theorems (see [6] and [8]). Buchman and Valentine (see [4] and [5]) asked

What conditions are required to ensure that if every n+ 1 of a family of compact convex sets
in IEn intersect a set of constant width d simultaneously, then all members of this family
intersect a set of constant width d simultaneously?

and

1Published electronically October 15, 2008
2E-mail:thanhan@math.ac.vn



270 Phan Thanh An

What conditions are required to ensure that if every n+ 1 of a collection of compact convex
sets in IEn contain a set of width d simultaneously, then all members of this collection contain
a set of constant width d simultaneously?

where the width of a closed convex set is the smallest distance between parallel supporting hyper-
planes of this set and a set of constant width is a compact convex set for which every two parallel
support hyperplanes are at the same distance apart.

The first question was investigated in [1]. Dealing with the second one, let F be a collection of
compact convex sets in IE2 such that all of them contains an equilateral triangle of width d and F
converges to the equilateral triangle. Then there does not exist any set of constant width d which
is contained in the equilateral triangle. This leads to the following questions

“For a given positive number d, to find a positive number d1 such that d1 < d and if every n+1
of a collection of compact convex sets in IEn contain a set of width d (contain a set of constant
width d, respectively) simultaneously, then all members of this collection contain a set of constant
width d1 simultaneously?”

(such set of constant width d1 is called common set of constant width d1 of the collection). Also,
if such d1 is found, there arise questions:

“For a given oracle which accepts n+ 1 sets of a collection of compact convex sets in IEn and
either returns a set of width d (a set of constant width d, respectively) contained in these sets, or
reports its non-existence, how to determine a common set of constant width d1?”

For a given oracle which accepts n + 1 sets of a collection of compact convex sets in IEn and
either returns a point in their common intersection, or reports its non-existence, [2] presented an
algorithm to determine a point in the common intersection of all sets of the collection. However,
until recently no such algorithm for Helly type theorems of sets of width d (sets of constant width
d, respectively) had been presented.

In this paper, two Helly-type theorems which deal with these questions are presented (Propo-
sitions 2.1-2.2). Given an oracle which accepts n+ 1 sets of a collection of compact convex sets in
IEn and either returns a set of width d (a set of constant width d, respectively) contained in these
sets, or reports its non-existence, we give an algorithm which determines a common set of constant
width d1 (Algorithm 3.1).

Before starting the analysis, we recall some definitions and properties. Let F be a collection of
compact convex sets in IEn. A set N ⊂ IEn is a translate of a set M ⊂ IEn if N = {x+ y : y ∈M}
for some vector x ∈ IEn.

Lemma 1.1 ([8]): Let M be a compact convex set in IEn. If every n+ 1 sets of F contain some
translate of M simultaneously, then all members of F contain some translate of M simultaneously.

Lemma 1.2 ([4]): If every n + 1 sets of F contain some set of width d simultaneously, then all
members of F contain a set of width d1 simultaneously, with d1 ≥ d

A sphere B(x,R) denotes the closed solid sphere in IEn of radius R about the centre x. Then,
B(y,R) is a translate of B(x,R) for every x, y ∈ IEn. B(x, r) is called an insphere of a set M if
B(x, r) ⊂ M and r is the greatest possible. In this case r is called inradius. For a given set M of
width d (a set of constant width d, respectively), there exists an insphere of M and although there
may be more than one insphere, the inradius is unique (see [7] and [10]).

Lemma 1.3 ([7]): For a given set of width d in IEn, the inradius r of the insphere of this set
satisfies
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r ≥
{

d
2
√
n

if n is odd
d
√
n+2

2(n+1) if n is even.

Lemma 1.4 ([3]): Every set of constant width d in IEn contains a sphere of radius

r = d− d
√

n

2(n+ 1)
. (1)

Lemma 1.5 ([9]): Suppose that S : = {x1, x2, . . . , xm} ⊂ IEn. If m ≥ n + 2 then S can be
partitioned into two sets S1 and S2 (i.e., S = S1∪S2 and S1∩S2 = ∅) such that convS1∩convS2 6= ∅.
A partition into two sets S1 and S2 of S : = {x1, x2, . . . , xm} is called a Radon partition of S.

2 Helly-type Theorems

We now present some Helly-type theorems.

Proposition 2.1: If every n + 1 sets of F contain some set of width d simultaneously, then all
members of F contain a sphere with radius r simultaneously satisfying

r =

{
d

2
√
n

if n is odd
d
√
n+2

2(n+1) if n is even.
(2)

Proof: Consider n + 1 arbitrary members of the collection F . Then they contain some set of
width d simultaneously. It follows from Lemma 1.3 that this set of width d contains a sphere with
radius r satisfying (2). According to Lemma 1.1, all members of F contain some sphere with the
radius r simultaneously.

If the assumption “contain some set of width d” is replaced by “contain some set of constant
width d” in Proposition 2.1, all of F contain a bigger sphere:

Proposition 2.2: If every n + 1 sets of F contain some set of constant width d simultaneously,
then all sets of this collection contain a sphere with radius r simultaneously satisfying (1).

Proof: It can be done exactly as the proof of Proposition 2.1 by citing Lemma 1.4 in place of
Lemma 1.3 and (1) in place of (2).

Note that the spheres in Propositions 2.1 and 2.2 are the sets of constant width 2r. In next
section, given an oracle which accepts n+ 1 sets of a collection of compact convex sets in IEn and
either returns a set of width d (a set of constant width d) contained in these sets, or reports its
non-existence, we will give an algorithm which determines a common sphere with radius r given
in Proposition 2.1 (in Proposition 2.2, respectively) (Algorithm 3.1).

3 Determining a Common Set of Constant Width

First we need the following proposition:

Proposition 3.1: Suppose that S : = {B(x1, r), B(x2, r), . . . , B(xm, r)} ⊂ IEn (r > 0). If
m ≥ n+ 2 then S can be divided into two sets S1 and S2 (i.e., S = S1 ∪ S2 and S1 ∩ S2 = ∅) such
that there is some sphere with radius r contained in convS1 ∩ convS2.
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Proof: By Lemma 1.5, S∗ : = {x1, x2, . . . , xm} can be divided into two sets S∗1 and S∗2 (i.e., S∗ =
S∗1 ∪ S∗2 and S∗1 ∩ S∗2 = ∅) such that convS∗1 ∩ convS∗2 6= ∅. Assume without loss of generality that
S∗1 = {x1, x2, . . . , xl} and S∗2 = {xl+1, xl+2, . . . , xm}. Set S1 = {B(x1, r), B(x2, r), . . . , B(xl, r)}
and S2 = {B(xl+1, r), B(xl+2, r), . . . ,
B(xm, r)}. Take x ∈ convS∗1 ∩ convS∗2 . It follows that

B(x, r) ⊂ convS∗1
⋂

convS∗2 +B(0, r)

⊂ (convS∗1 +B(0, r))
⋂

(convS∗2 +B(0, r))

= conv(S∗1 +B(0, r))
⋂

conv(S∗2 +B(0, r))

= convS1

⋂
convS2.

We also say that a partition into two sets S1 and S2 of S : = {B(x1, r), B(x2, r),
. . . , B(xm, r)} is a Radon partition of S.

Given a collection F = {V1, V2, . . . , Vm} of compact convex sets in IEn, let us assume that
we have available an “oracle”, say O, which accepts as input n + 1 sets of F , and which gives
as its output a common set of width d (a set of constant width d, respectively), or reports its
non-existence, as the case may be.

For a given set P of width d (a set of constant width d, respectively), assume that c is the
center of an insphere of P (the proof of Theorem 2.7.7 [10] indicates how such center c can be
found). Suppose that r satisfies (2) ((1), respectively). Then, by Proposition 2.1 (Proposition 2.2,
respectively), B(c, r) ⊂ P .

Algorithm 3.1:

Given a collection F = {V1, V2, . . . , Vm} of compact convex sets in IEn, let us assume that we
have available the oracle O. We now determine a sphere with radius r given in Proposition 2.1 (in
Proposition 2.2, respectively).

We now use the idea of the algorithm presented in [2] as follows. For each k = 1, 2, . . . ,m, we
compute a common sphere with the radius r for each collection of the form

{V1, V2, . . . , Vk, Vt1 , Vt2 , . . . , Vtn}, {t1, t2, . . . , tn} ⊂ {k + 1, . . . ,m}. (3)

Note that when k = m − n, this is the required common set of width d (a set of constant width
d, respectively). If at any time a call to the oracle reveals that some subcollection has no common
set of width d (no common set of constant width d, respectively), then the algorithm terminates .

For k = 1, a common set of width d (a common set of constant width d, respectively) of each of

the

(
m− 1
n

)
families {V1, Vt1 , Vt2 , . . . , Vtn} may be obtained directly from the oracle. In general,

having found all of the common sets of width d (common sets of constant width d, respectively)
for the families in (3) up to k − 1 ≥ 1, we compute the values for k by taking a Radon partition
following n+ 2 common sets of width d (n+ 2 common sets of constant width d, respectively).

• P0, a common set of width d (a common set of constant width d, respectively) of the family
{V1, V2, . . . , Vk−1, Vt1 , Vt2 , . . . , Vtn}. Take the center c0 of an insphere of P0. Then B(c0, r) ⊂
P0.
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• Pi, a common set of width d (a common set of constant width d, respectively) of the family
{V1, V2, . . . , Vk, Vt1 , Vt2 , . . . , Vtn} \ Vti , for 1 ≤ i ≤ n. Take the center ci of an insphere of Pi.
Then B(ci, r) ⊂ Pi.

• Pn+1, a common set of width d (a common set of constant width d, respectively) of the family
{Vk, Vt1 , Vt2 , . . . , Vtn}. Take the center cn+1 of an insphere of Pn+1. Then B(cn+1, r) ⊂ Pn+1.

Note that P0, . . . , Pn have already been computed and can be looked up. The common set of width
d (the common set of constant width d, respectively) Pn+1 is obtained by a call to the oracle. Set
K0 = Vk,Ki = Vti , i = 1, . . . n, and Kn+1 =

⋂
1≤i≤k−1 Vi. It is easy to verify that B(ci, r) ⊂⋂

j 6=iKj for 0 ≤ i ≤ n + 1. By Proposition 3.1, the set S = {B(c0, r), B(c1, r), . . . , B(cn+1, r)}
can be divided into two sets S1 and S2, say S1 = {B(c0, r), B(c1, r), . . . , B(cl, r)} and S2 =
{B(cl+1, r), B(cl+2, r), . . . , B(cn+1, r)}, such that there is some sphere with radius r contained
in convS1 ∩ convS2. Since Ki (0 ≤ i ≤ n + 1) are convex and B(ci, r) ⊂ Kj with j 6= i, we
conclude that convS2 ⊂ Ki if 0 ≤ i ≤ l and convS1 ⊂ Ki if l + 1 ≤ i ≤ n + 1. It follows
that convS1 ∩ convS2 ⊂

⋂n+1
i=0 Ki. Then the sphere B(x, r) is a common sphere to all the sets

V1, V2, . . . , Vk, Vt1 , Vt2 , . . . Vtn .

Note that the total number of oracle calls required by Algorithm 3.1 is

(
m

n+ 1

)
. But this

number may not accurately describe the complexity of the algorithm, because it does not account
for the complexity of the appeals to Proposition 3.1 or of finding the centers ci of the inspheres of
Pi.

4 Concluding Remarks

By Propositions 2.1 and 2.2, the open questions mentioned in Section 1 become

“For a given positive number d, to find a positive number d1 such that

d > d1 >

{
d√
n

if n is odd
d
√
n+2

n+1 if n is even

(d > d1 > 2d − d
√

2n
n+1 , respectively) and if every n + 1 of a collection of compact convex sets in

IEn contain a set of width d (contain a set of constant width d, respectively) simultaneously, then
all members of this collection contain a set of constant width d1 simultaneously?”.

In [1], some Helly-type theorems for roughly convexlike sets were presented. Similar computa-
tional aspects for such theorems should be a subject of another paper.
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