
European Society of Computational Methods
in Sciences and Engineering (ESCMSE)

Journal of Numerical Analysis,
Industrial and Applied Mathematics

(JNAIAM)
vol. 3, no. 3-4, 2008, pp. 275-297

ISSN 1790–8140

BDF Compound-Fast Multirate Transient Analysis with

Adaptive Stepsize Control1

A. Verhoeven2, B. Tasić, T.G.J. Beelen, E.J.W. ter Maten, R.M.M. Mattheij

CASA, Department of Mathematics and Computer Science,
Technische Universiteit Eindhoven,

Den Dolech 2, 5600 MB, Eindhoven, The Netherlands

DMS, NXP Semiconductors B.V.
High Tech Campus 48, 5656 AE, Eindhoven, The Netherlands

Received January 30, 2007; accepted in revised form June 23, 2008

Abstract: Transient analysis is an important circuit simulation technique. The circuit
model, which is a system of differential-algebraic equations, is solved for a given initial
condition using numerical time integration techniques. Multirate methods are efficient if
the dynamical behaviour of the circuit model is not uniform. This paper deals with the
analysis and control of the discretization errors for multirate time integration methods.

c© 2008 European Society of Computational Methods in Sciences and Engineering

Keywords:

Backward Difference Formula; Circuit simulation; Differential-algebraic equations; Dis-
cretization error; Multirate; Numerical time integration; Partitioning; Transient analysis

Mathematics Subject Classification: 65L; 65M55; 34E13; 47N70;

PACS: 85.40

1 Introduction

Analogue electrical circuits are usually modeled by differential-algebraic equations of the following
type:

d

dt
[q(t,x)] + j(t,x) = 0. (1)

The vector-valued functions q, j ∈ R
d are constructed by Modified Nodal Analysis [5] and represent

the charges and currents in the network model. The state vector x(t) ∈ R
d represents the nodal

voltages and the currents through the voltage-defined elements like voltage sources and inductors
and depends on the time variable t. A common analysis is the transient analysis, which computes
the solution x(t) of this non-linear DAE along the time interval [0, T] for a given initial state. In
the classical circuit simulators this Initial Value Problem is solved by means of implicit integration

1Published electronically October 15, 2008
2Corresponding author. E-mail: averhoev@kliksafe.nl and Arie.Verhoeven@na-net.ornl.gov

276 A. Verhoeven et al

methods, like the BDF-methods. All equations are discretized by means of the same stepsize.
Often, parts of electrical circuits have latency or multirate behaviour. Latency means that parts of
the circuit are constant or slowly time-varying during a certain time interval. Multirate behaviour
means that some variables are slowly time-varying compared to other variables. In contrast to
latency and activity, multirate behaviour is a relative concept and independent of the model. In
both cases, it would be attractive to integrate these slow parts with a larger timestep than the
other parts. This saves the computational workload while the accuracy is preserved. Multirate
time-integration methods appear to be very efficient for this kind of circuit models.

1.1 Partition of the system

For a multirate method it is necessary to partition the variables and equations into an active
(A) and a latent (L) part. This can be done by the user or automatically. Sometimes it is even
useful to change the partition during the transient simulation. Although the construction of a
good partition is an interesting research topic, it is skipped in this paper. Details can be found in
[16, 18]. Let BA ∈ R

dA×d and BL ∈ R
dL×d, with dA + dL = d, be selection matrices which satisfy

BAB
T
A = IdA

,BLB
T
L = IdL

,BAB
T
L = O,BLB

T
A = O, and BT

ABA +BT
LBL = Id. Here Id∗

∈ R
d2
∗

is the identity matrix and O a non square zero matrix. Then the variables and functions can be
split in active (A) and latent (L) parts:

x = BT
AxA +BT

LxL,

q(t,x) = BT
AqA(t,BAx,BLx) +BT

LqL(t,BAx,BLx),

j(t,x) = BT
AjA(t,BAx,BLx) +BT

LjL(t,BAx,BLx).

(2)

Because of the properties of BA,BL we have xA = BAx,xL = BLx,qA = BAq, etc. Now equation
(1) is equivalent to the following partitioned system:

d

dt
[qA(t,xA,xL)] + jA(t,xA,xL) = 0, (3)

d

dt
[qL(t,xA,xL)] + jL(t,xA,xL) = 0. (4)

Of course it is also possible to extend this partition in a further partition of k sub-systems, where
the k sub-systems have an decreasing activity

d
dt

[q1(t,x1, . . .xk)] + j1(t,x1, . . . ,xk) = 0,
...

d
dt

[qk(t,x1, . . .xk)] + jk(t,x1, . . .xk) = 0.

(5)

Now we need the selection matrices Bi ∈ R
di×d for i = 1, . . . , k with the properties:

BiB
T
j =

{

Idi
if i = j,

O if i 6= j.

Then the variables and functions can be split in parts of different activity, where again xi = Bix,
etc.

x = BT
1 x1 + . . .+BT

k xk,

q(t,x) = BT
1 q1(t,B1x, . . . ,Bkx) + . . .+BT

k qk(t,B1x, . . . ,Bkx),

j(t,x) = BT
1 j1(t,B1x, . . . ,Bkx) + . . .+BT

k jk(t,B1x, . . . ,Bkx).

(6)

c© 2008 European Society of Computational Methods in Sciences and Engineering (ESCMSE)

Error analysis of BDF Compound-Fast multirate method ... 277

1.2 Multirate time-integration

In contrast to classical integration methods, when k = 2, multirate time-integration methods inte-
grate both parts (3),(4) with different stepsizes or even with different schemes. Besides the coarse
time-grid {Tn, 0 ≤ n ≤ N} with stepsizes Hn := Tn − Tn−1, also a refined time-grid {tn−1,m, 1 ≤
n ≤ N, 0 ≤ m ≤ qn} is used with stepsizes hn,m := tn,m − tn,m−1 and multirate factors qn.

s

s

ss
ss

ss

L A

xL xA

�

�

-

Hn

Tn−1

Tn

6
interface

���
hn−1,1

tn−1,0

tn−1,1

tn,0 = tn−1,qn

For non-synchronized grids in-
terpolation at the coarse time-
points Tn is used, which can
be more efficient for low mul-
tirate factors. Because this
might also reduce the accuracy
and stability, we will only con-
sider synchronized time-grids.
If the two time-grids are syn-
chronized, Tn = tn,0 = tn−1,qn

holds for all n. The integra-
tion orders of the BDF metod
for the coarse and refined time-grids are Kn and kn,m respectively. Although they can be variable,
from now on they are assumed to be fixed with Kn = K, kn,m = k.
There are several multirate approaches [1, 2, 7, 12, 14, 15, 17, 20] for the partitioned system (3,4).
For specific aspects related to DAEs see: [3, 15]. We will consider the ”Compound-Fast” [20] ver-
sion of the BDF methods because of stability reasons. The stability of this multirate method has
been studied in [20]. The Compound-Fast method (Alg.1) first integrates (3) and (4) together with
one large stepsize H, which results in xn

A and xn
L. Afterwards, only equation (3) is re-integrated

with a small stepsize h, while xL is approximated by means of interpolation of order K. The
implicit correctors xn

L,x
n
A and x

n−1,m
A satisfy the nonlinear equations (7),(8),(10) that has to be

solved by e.g. the Newton method. As starting guess one uses the explicit predictors yn
L,y

n
A and

y
n−1,m
A using extrapolation of order K and k, respectively.

ALGORITHM 1 The BDF Compound-Fast multirate method (for Hn = H,hn−1,m = h)

Compound phase Solve for xnL and xnA:

ρ0qA(Tn,x
n
A,x

n
L) + . . .+ ρKqA(Tn−K ,xn−K

A ,xn−K
L) +HjA(Tn,x

n
A,x

n
L) = 0 (7)

ρ0qL(Tn,x
n
A,x

n
L) + . . .+ ρKqL(Tn−K ,xn−K

A ,xn−K
L) +HjL(Tn,x

n
A,x

n
L) = 0 (8)

Refinement phase Solve for x
n−1,m
A (m = 1, . . . , q):

ρ̄0qA(tn−1,m,xn−1,m
A , x̂n−1,m

L) + . . .+ ρ̄kqA(tn−1,m−k,x
n−1,m−k
A , x̂n−1,m−k

L) + (9)

hjA(tn−1,m,xn−1,m
A , x̂n−1,m

L) = 0 (10)

x̂
n−1,m
L − (µ0x

n
L + . . .+ µKxn−K

L) = 0 (11)

Remark that dA ≪ dL. If dA = ǫdL, h = νH we can expect an efficiency gain S ≈ 1
ν+ǫ

. It clearly
depends on the dynamics and geometry (partition sizes).

c© 2008 European Society of Computational Methods in Sciences and Engineering (ESCMSE)

278 A. Verhoeven et al

1.3 Efficiency analysis of multirate methods

Although we introduced the Compound-Fast BDF algorithm, the next analysis is valid for a much
larger family of multirate methods. Let WC ,WR be the computational work per timestep for the
compound phase and the refinement phase and define the workload ratio by E := WR

WC
. Let WS

be the computational work per step for the standard singlerate BDF method of order K, which
satisfies WS

WC
=: F ≈ 1. If H,h are the average compound and refinement steps and q := H

h
is the

average multirate factor, then a multirate method on [0, T] will need the following computational
workload:

Wmult := WR

T

h
+WC

T

H
= WC T (E

1

h
+

1

H
) = WC

T

h
(E +

1

q
), (12)

while a singlerate method, with step hs, would need Wsing := WS
T
hs
. Although h ≈ hs, they are

kept different because h has to be slightly smaller than hs to obtain the same accuracy. Thus we
have the following speed-up factor for the multirate method

S :=
Wsing

Wmult
=

WS
1
hs

WC
1
h
(E + 1

q
)
= F

h

hs

1
1
q
+ E

≈ h

hs

1
1
q
+ E

. (13)

Here q is the multirate factor which is large if the dynamics of the refined part are more active
than the other slow part. The ratio E is determined by the geometric partition and describes the
relative costs of a refinement step which depends on the size dA of the refinement part. It follows
that S → F

E
h
hs

for q → ∞, and S → F q h
hs

for E → 0. Clearly, we get a large speed-up factor if
q is large and E is small. Only if S > 1 it could be attractive to use for instance the multirate
version of a certain integration scheme. This model (13) can be used for automatic or dynamical
partitioning [18].

The multirate factor q can be approximated by the ratio between the proposed steps for the
next step of a multirate and singlerate method q̂ := Hnew

hnew
. Here Hnew, hnew are the proposed

stepsizes for the next compound step or singlerate step, respectively. Any integration method has
an algorithm for Hnew, hnew, which always depend on the integration orders K, k. In fact q̂ depends
on the estimated local error vector ê and, if K = k, approximately behaves like

q̂ ≈
(‖BAê‖
‖BLê‖

)
1

K+1

. (14)

The workload ratio E is approximated by

Ê :=

(

dA
d

)α

, (15)

where α ∈ (1, 3) depends on the application. By default we use α = 2. Note that it is also
possible to model E by a parameterized rational function of dA and d, where the parameters
can be identified by using experimental data. The value of α is also important for automatic
partitioning algorithms [16].

1.4 Conditions for the partition

Because of the hierarchical structure of the functions q, j it can be proved that the circuit model
(1) has an unique solution. For a proper implementation of the previous multirate schemes, it is
required that the solvability is also preserved for the active part. Furthermore, it is also very useful
if the active part of a stable circuit model is also stable and has the same differential index as the
original DAE. This implies that not all partitions of a DAE are allowed.

c© 2008 European Society of Computational Methods in Sciences and Engineering (ESCMSE)

Error analysis of BDF Compound-Fast multirate method ... 279

Consider the linear time-invariant system

Σ : Cẋ+Gx = u. (16)

It is well-known that

the system (16) is solvable ⇔ σ(Σ) is a finite set,
the system (16) is stable ⇔ ∀λ∈σ(Σ)Re[λ] < 0,

where σ(Σ) = {λ ∈ C : det(λC + G) = 0}. For a general partition these properties are not
preserved for the active part of a DAE. For example, consider the linear 2-dimensional problem
Σ : Cẋ+Gx = s, where

C = G =

(

0 1
1 0

)

.

This DAE is solvable because det(λC+G) = −(λ+1)2 which is only equal to zero for λ = −1, so
σ(Σ) = {−1} is a finite set. If we take the partition with

BA =
(

1 0
)

, BL =
(

0 1
)

,

we get for the refinement the unsolvable problem

0ẋA + 0xA = s1.

Notice that the active part of an ODE is always solvable, because then C = I is an invertible
matrix. However, the stability is not automatically preserved for both ODEs and DAEs. If we
take

C =

(

1 0
0 1

)

, G =

(

−1 −2
2 2

)

,

we have a stable ODE with eigenvalues − 1
2 ± 1

2

√
7i, but for the refinement we get the following

unstable differential equation

ẋA = xA + s1.

Finally it can be shown that also the index of the active part is not always preserved.

1.5 Overview of this paper

This paper deals with the implementation and the error control of the Compound-Fast multirate
version of the BDF scheme. The Compound-Fast multirate version appears to be a numerically
stable method compared to other semi-explicit multirate methods [17, 20]. We use BDF integration
methods because they use less function evaluations and they are very well suited for interpolation.
For linear multistep methods the solution can always be represented by a piecewise polynomial,
which can be used to interpolate the latent interface variables without loss of accuracy.
The paper is organized as follows. Section 2 describes in detail how the BDF Compound-Fast
method can be efficiently implemented by means of the Nordsieck data representation. Section 3
contains an analysis of the local discretization error and shows furthermore how this error can be
controlled by the multirate stepsizes H,h. Then section 4 shows some numerical test examples,
which show how the presented multirate method and error control work in practice. Finally, section
5 closes this paper with some concluding remarks.

c© 2008 European Society of Computational Methods in Sciences and Engineering (ESCMSE)

280 A. Verhoeven et al

2 BDF Compound-Fast multirate algorithm

This section describes how the BDF Compound-Fast multirate algorithm can be efficiently im-
plemented by means of the Nordsieck data representation. The BDF method stores the previous
numerical values in polynomial form. There are several manners to store and process polynomials,
such as the Lagrange, scaled divided difference or Nordsieck representation. This topic has been
studied very thoroughly in [11]. Because the Nordsieck representation is frequently used, we will
investigate some properties of them. More details can be read in [6].

2.1 Introduction to the Nordsieck data representation

Let p(t) : R → R
d be a vector-valued polynomial of degree k. This polynomial can be written like

a truncated Taylor series around t1:

p(t) =

k
∑

i=0

1

i!

di

dti
p(t1)(t− t1)

i.

It is very common to expand p(t) in the following scaled form (for some h > 0):

p(t) =

k
∑

i=0

(

hi di

dti
p(t1)

i!

)

(

t− t1
h

)i

.

This polynomial could describe the time-behaviour of x(t) or q(t,x(t)) at a certain time-interval
[tn−1, tn], where t1 = tn and h = tn − tn−1. The Nordsieck matrix P̄(t1, h) ∈ R

d×(k+1) of this
polynomial contains all coefficients of this polynomial, i.e.

P̄ =

(

p(t1), h
d

dt
p(t1),

h2

2

d2

dt2
p(t1), . . . ,

hk

k!

dk

dtk
p(t1)

)

.

This matrix P̄ is called the transposed Nordsieck vector if the state dimension d is equal to one.
Now, the vector-valued polynomial and its Nordsieck matrix are related by the next equation:

p(t) =

k
∑

i=0

p̄i+1

(

t− t1
h

)i

, (17)

where p̄i is the i-th column of P̄.

Definition 1 For 1 ≤ i ≤ k + 1 the vector e(k, ω) ∈ R
k+1 is defined by

e(k, ω) :=
[

1, ω, . . . , ωk
]T

.

For 1 ≤ i ≤ k + 1 and 1 ≤ j ≤ k + 1 the matrix A(k, ω, µ) ∈ R
(k+1)×(k+1) is defined by

aij :=

{

0 i < y,
(

i−1
j−1

)

ωi−1µi−j i ≥ j.
(18)

For 1 ≤ i ≤ k+ 1 and 1 ≤ j ≤ l+ 1 the non-square Vandermonde matrix V(k, l) ∈ R
(k+1)×(l+1) is

defined by

vij :=

{

1 i = j = 1,
(1− j)i−1 otherwise.

c© 2008 European Society of Computational Methods in Sciences and Engineering (ESCMSE)

Error analysis of BDF Compound-Fast multirate method ... 281

Clearly, the Nordsieck matrix depends on the time-point t1 and the stepsize h. This means that
changing t1 or h will also change the Nordsieck vector. If the Nordsieck matrix P̄(t1, h1) is available,
p(t) can be constructed as follows:

p(t) =
k
∑

i=0

p̄i+1

(

t− t1
h1

)i

= P̄ · e(k, t− t1
h1

). (19)

Two Nordsieck matrices P̄(t1, h1) and P̄(t2, h2) are called equivalent if they represent the same
polynomial. If one Nordsieck matrix P̄ := P̄(t1, h1) is known, all other Nordsieck matrices Q̄ :=
P̄(t2, h2) can also be computed. Theorem 1 shows that Q̄ can be computed by just a matrix
multiplication.

Theorem 1 Assume that P̄ := P̄(t1, h1) and Q̄ := P̄(t2, h2) are two equivalent Nordsieck ma-
trices, which represent the same polynomial p(t). They use time-points t1, t2 and stepsizes h1, h2

respectively. Then the Nordsieck matrices are related by

Q̄ = P̄ ·A(k,
h2

h1
,
t2 − t1
h2

), (20)

where A ∈ R
(k+1)×(k+1) is defined in (18).

This Theorem can be used to transform the Nordsieck matrices if P̄ and Q̄ have the same number
of columns k. In practice P̄ and Q̄ may also have different numbers of columns, k1 and k2. If the
polynomial p(t) of degree k1 is represented by P̄, it is only possible to describe it also with Q̄ if
k2 ≥ k1. Otherwise, p(t) can only be approximated by a lower degree polynomial q(t), which is
represented by Q̄, such that q(t) looks like p(t) in the neighbourhood of t2. Before we state the
next theorem, we need the following Definition.

Definition 2 For 1 ≤ i ≤ k + 1 and 1 ≤ j ≤ l + 1 the matrices T(1)(k, l, ω, µ),T(2)(k, l, ω, µ) ∈
R

(k+1)×(l+1) are defined by

T(1) := A(k, ω, µ) ·V(k, l) ·V(l, l)−1 (21)

T(2) := A(k, ω, µ) ·
[

V(k, l − 1), ek2
]

·
[

V(l, l − 1), el2
]−1

(22)

where ek2 , e
l
2 are the unit vectors [0, 1, 0, . . .]T of length k + 1 and l + 1, respectively.

Theorem 2 Consider the polynomial p(t) of degree k1 which is represented by P̄ ∈ R
d×(k1+1)

using time-point t1 and stepsize h1. Let Q̄ ∈ R
d×(k2+1) be the Nordsieck matrix of q(t) of degree

k2 with time-point t2 and stepsize h2. Then it holds that

q(t2 − jh2) = p(t2 − jh2), 0 ≤ j ≤ k2 ⇔ Q̄ = P̄ ·T
(1)(k1, k2,

h2

h1
,
t2 − t1

h2
), (23)

{

q(t2 − jh2) = p(t2 − jh2), 0 ≤ j ≤ k2 − 1
d
dt
q(t2) = d

dt
p(t2)

⇔ Q̄ = P̄ ·T
(2)(k1, k2,

h2

h1
,
t2 − t1

h2
). (24)

Using the transformation matrix T(1) is just similar to interpolation, while T(2) guarantees a
smooth transition between p and q around t2.

c© 2008 European Society of Computational Methods in Sciences and Engineering (ESCMSE)

282 A. Verhoeven et al

2.2 Implementation of the BDF Compound-Fast multirate algorithm

Before we describe the proposed multirate algorithm in detail for both the compound step and the
refinement phase, we have to define the required polynomials for the BDF algorithm. Firstly, the
BDF integration of order K on the coarse time-grid needs the Lagrange basis polynomial ln(t) on
{Tn−K , . . . , Tn}, with

ln(Tn−j) =

{

1 if j = 0,
0 if j 6= 0.

Let l̄
n ∈ R

(K+1) be the corresponding Nordsieck vector [6] of ln(t) which can be expressed as

ln(t) =

K
∑

i=0

l̄ni+1

(

t− Tn

Hn

)i

.

Here l̄ni+1 is the i+ 1-th element of the Nordsieck vector

l̄
n
=

(

ln(Tn), Hn

d

dt
ln(Tn), . . . ,

HK
n

K!

dK

dtK
ln(Tn)

)T

.

Furthermore, also the Nordsieck matrices Ȳ
n
, X̄

n
, P̄

n
, Q̄

n ∈ R
d×(K+1) are needed, which represent

the local predictor and corrector polynomials for x(t) and q(t,x(t)), respectively [6]. For instance,
the predictor polynomial yn(t) for x(t) on [Tn−1, Tn] satisfies

yn(t) =

K
∑

i=0

ȳn
i+1

(

t− Tn

Hn

)i

.

Here ȳn
i+1 is the i+ 1-th column of the Nordsieck matrix

Ȳ
n
=

(

yn(Tn), Hn

d

dt
yn(Tn), . . . ,

HK
n

K!

dK

dtK
yn(Tn)

)

.

The multirate BDF method also integrates the active part independently on a refined time-grid with
order k. There it needs a different Lagrange basis polynomial ln−1,m(t) on {tn−1,m−k, . . . , tn−1,m},
with

ln−1,m(tn−1,m−j) =

{

1 if j = 0,
0 if j 6= 0.

Again, it also needs the refined Nordsieck vectors Ȳ
n−1,m
A , X̄

n−1,m
A , P̄

n−1,m
A , Q̄

n−1,m
A ∈ R

dA×(k+1),
which represent the local refined predictor and corrector polynomials for x(t) and q(t,x(t)),
respectively. Now, the refined predictor polynomial y

n−1,m
A (t) for xA(t) on [tn−1,m−1, tn−1,m]

−1.5 −1 −0.5 0 0.5 1 1.5

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Refined grid

Coarse grid

Figure 1: Typical form of the pre-
dictor (dashed) and corrector (solid)
polynomials on the coarse and re-
fined time-grids.

satisfies

y
n−1,m
A (t) =

k
∑

i=0

ȳ
n−1,m
A,i+1

(

t− tn−1,m

hn−1,m

)i

,

where

Ȳ
n−1,m
A =

(

y
n−1,m
A (tn−1,m), . . . ,

hk
n−1,m

k!

dk

dtk
y
n−1,m
A (tn−1,m)

)

.

Figure 1 shows the typical form of the predictor and correc-
tor polynomials at the coarse and refined grids. The polyno-
mials are just of degree one, which implies the use of linear
extrapolation for the prediction. Clearly, the solution be-
comes smoother for higher degree polynomials.

c© 2008 European Society of Computational Methods in Sciences and Engineering (ESCMSE)

Error analysis of BDF Compound-Fast multirate method ... 283

The compound step

During the compound step in fact a normal BDF step is done for the complete DAE. This means
that the next algebraic system is solved:

ρn0q(Tn,xn) +Hnj(Tn,xn) + bn = 0, (25)

where ρn0 is an order-dependent parameter and bn is a vector which represents the history of the
numerical integration. We can easily express ρn0 and bn in terms of l̄

n
and P̄

n
by ρn0 = l̄n2 and

bn = p̄n
2 − ρn0 p̄

n
1 [6]. Here p̄n

1 and p̄n
2 are just the first two columns of P̄

n
, the Nordsieck matrix of

the predictor polynomial pn(t), which is set to be equal to qn−1(t) if the integration order is the
same as in the previous timestep. For the Nordsieck vectors this means that

P̄
n
= Q̄

n−1
Tn, Ȳ

n
= X̄

n−1
Tn, (26)

where Tn = T(∗)(Kn,Kn−1,
Hn

Hn−1
, 1) has been defined before in Definition 2. For a smooth tran-

sition at Tn one should use the second transformation matrix T(2). Usually the initial guess for
the solution of (25) is equal to the predictor value ȳn

1 , that is based on extrapolation of order K.
Because the compound step will be much larger than the time-constant of the active part, we use
a modified Newton scheme which relaxes the active part of the residual by using a small positive
weighting factor in front of the active part. Thus only the latent part of xn really has to converge,
while the active part only has to be bounded. For a compound step, the active part of xn still
must be improved by the refinement phase. After the refinement, we use the updated xn and qn

to correct the complete predictor polynomials pn(t) and yn(t):

qn(t) = pn(t) + (q(Tn,xn)− pn(Tn))l
n(t), (27)

xn(t) = yn(t) + (xn − yn(Tn))l
n(t). (28)

For the Nordsieck vectors this means: Q̄
n
= P̄

n
+ (qn − q̂n)

(

l̄
n)T

, X̄
n
= Ȳ

n
+ (xn − x̂n)

(

l̄
n)T

.

The refinement phase

In fact, the refinement solves a new initial value problem for a much smaller perturbed DAE. It
solves for each time-point tn−1,m the nonlinear equation:

ρ̄n−1,m
0 qA(tn−1,m,xn−1,m

A , x̂n−1,m
L) + hn−1,mjA(tn−1,m,xn−1,m

A , x̂n−1,m
L) + b

n−1,m
A = 0, (29)

where x̂
n−1,m
L is the interpolated latent part. We can compute x̂

n−1,m
L from interpolation-based

functions which are constructed between the compound step and the refinement phase. Another
possibility is to compute it from the Nordsieck matrix X̄

n
if it is already corrected for the latent

part. Then we can compute directly

x̂
n−1,m
L = BLX̄

n
e(K,

tn−1,m − Tn

Hn

), (30)

where we used the formula in (19). Furthermore ρ̄n−1,m
0 and b

n−1,m
A can be computed in a similar

way as for the compound step: ρ̄n−1,m
0 = l̄n−1,m

2 ,bn−1,m
A = p̄

n−1,m
A,2 − ρ̄n−1,m

0 p̄
n−1,m
A,1 . The predictor

Nordsieck matrices P̄
n−1,m
A , Ȳ

n−1,m
A are similarly computed by

P̄
n−1,m
A = Q̄

n−1,m−1
A Tn−1,m, Ȳ

n−1,m
A = X̄

n−1,m−1
A Tn−1,m, (31)

c© 2008 European Society of Computational Methods in Sciences and Engineering (ESCMSE)

284 A. Verhoeven et al

where Tn−1,m = T(∗)(kn−1,m, kn−1,m−1,
hn−1,m

hn−1,m−1
, 1) for m > 0. For m = 0 we need the matrices

Q̄
n−2,q−1
A , X̄

n−2,q−1
A which are only available for a static partition. Otherwise we need to transform

a part of the coarse Nordsieck matrices Q̄
n−1

, X̄
n−1

.
In general, it is not very difficult to solve (29) because we can trust the predictor polynomial

giving an accurate initial guess ȳn−1,m
A,1 . The solution is used to correct the predictor polynomials.

For the Nordsieck representation we get: Q̄
n−1,m
A = P̄

n−1,m
A + (qA(tn−1,m,xn−1,m

A , x̂n−1,m
L) −

q̂A)
(

l̄
n−1,m

)T

, X̄
n−1,m
A = Ȳ

n−1,m
A + (xn−1,m

A − x̂
n−1,m
A)

(

l̄
n−1,m

)T

. Finally, if tn−1,m = Tn the

refined corrector polynomials are evaluated at Tn:

BAxn = X̄
n−1,m
A e(k,

Tn − tn−1,m

hn−1,m
), BAqn = Q̄

n−1,m
A e(k,

Tn − tn−1,m

hn−1,m
), (32)

where again we used the formula in (19).

3 Error control of BDF Compound-Fast multirate algorithm

The accuracy of a multirate method can be controlled by the stepsizes of the compound step and
the refinement phase. This section will show how Hn and hn−1,m can be controlled such that the
local error is smaller than a given tolerance level. We will analyze how the local discretization errors
at the coarse and refined grid asymptotically behave. Afterwards an error model is constructed
which is used to develop stepsize controllers for the coarse and refined time-grids.

3.1 Analysis of the local discretization error

In this section we generalize some techniques in [11, 13] to our multirate case. The local dis-
cretization error dn ∈ R

d is defined as the residual of the scheme at the coarse time-grid after
inserting the exact solution. It still has the familiar behaviour dn = O(HK+1

n). In practice the
local discretization errors are not known and should be estimated up to a sufficient accuracy. The

local discretization error dn can be estimated by d̂
n
using the Nordsieck representation for q:

d̂
n
:=

−Hn

Tn − Tn−K−1
[q̄n

1 − p̄n
1] . (33)

Now

r̂nC := ‖d̂n

L‖+ τ‖d̂n

A‖ (34)

is the used weighted error norm for the coarse grid, which must satisfy r̂nC < TOLC . Here τ ≥ 0
is a small non-negative relaxation number which must improve the convergence of the compound
step. The optimal value is not known yet, but in our experiments τ = 0 worked satisfactory.

For multirate methods we also need to consider the local discretization error d
n,m
A ∈ R

dA at
the refined time-grid. At the refined time-grid, at the interface between latent and active areas,
the DAE has been perturbed by the interpolated latent variables. The refined local discretization
error equals

d
n,m
A = ρ̄n−1,m

0 qA(tn−1,m,xA(.),xL(.)) + hn−1,mjA(tn−1,m,xA(.),xL(.)) + b
n−1,m
A ,

where

b
n−1,m
A = ρ̄n−1,m

1 qA(tn−1,m−1,xA(.),xL(.)) + . . .+ ρ̄n−1,m
k qA(tn−1,m−k,xA(.),xL(.)).

c© 2008 European Society of Computational Methods in Sciences and Engineering (ESCMSE)

Error analysis of BDF Compound-Fast multirate method ... 285

We also consider the perturbed local discretization error d̃
n,m

A , which is the residual of the refine-
ment scheme with fixed interpolated slow part after inserting the exact active solution. Clearly,
d̃
n,m

A satisfies

d̃
n,m

A = ρ̄n−1,m
0 qA(tn−1,m,xA(.), x̂

n−1,m
L) + hn−1,mjA(tn−1,m,xA(.), x̂

n−1,m
L) + b̃

n−1,m

A ,

where

b̃
n−1,m

A = ρ̄n−1,m
1 qA(tn−1,m−1,xA(.), x̂

n−1,m−1
L) + . . .+ ρ̄n−1,m

k qA(tn−1,m−k,xA(.), x̂
n−1,m−k
L).

The perturbed local discretization error d̃
n−1,m

A behaves as O(hk+1
n−1,m) and can be estimated in a

similar way as dn from the perturbed Nordsieck matrices of the refinement phase.

ˆ̃
d
n,m
A :=

−hn−1,m

tn−1,m − tn−1,m−k−1
BA

[

q̄
n−1,m
1 − p̄

n−1,m
1

]

. (35)

The norm of ‖ˆ̃dn,m
A ‖ will be denoted by

ˆ̃rn−1,m
A := ‖ˆ̃dn,m

A ‖. (36)

For singlerate methods the accuracy can completely be controlled by controlling the local dis-
cretization errors. This is no longer the case for multirate methods, where also the interpolation
errors play an important role. Let x̂L(t) be the interpolation-based function which is exact at
the coarse or refined time-grid. Then the interpolation errors rn, rn−1,m are defined as the maxi-
mum errors of x̂L(t) between the time-points of the coarse and refined time-grids, respectively. If
the interpolation order is equal to the integration order, they again have the familiar behaviour
rn = O(HK+1

n), rn−1,m = O(hk+1
n−1,m).

Lemma 1 For the interpolation errors rn, rn−1,m it applies that

‖rn‖ ≤ ‖r̂n‖, ‖rn−1,m‖ ≤ ‖r̂n−1,m‖, (37)

where

r̂
n :=

1

4

−Hn

Tn − Tn−K−1
(x̄n1 − ȳn1), r̂

n−1,m :=
1

4

−hn−1,m

tn−1,m − tn−1,m−k−1
(x̄n−1,m

1 − ȳ
n−1,m
1). (38)

Proof Let x(t) be the exact solution and x̂ a polynomial of degree K which interpolates x at the
previous K time-points. At the coarse time-grid we have the following asymptotic behaviour:

x(t)− x̂(t) = (t− Tn−K) · · · (t− Tn−1)(t− Tn)
x(K+1)(τ)
(K+1)! , τ ∈ (Tn−K , Tn)

= (t− Tn−K) · · · (t− Tn−1)(t− Tn)
x(K+1)(Tn)

(K+1)! +O(HK+2
n).

(39)

We easily derive the upper bound maxt∈[Tn−1,Tn] ‖x(t)− x̂(t)‖ for all t ∈ [Tn−1, Tn], which satisfies

up to O(HK+2
n):

max
t∈[Tn−1,Tn]

‖x(t)− x̂(t)‖ ≤
∏K

j=2(Tn − Tn−j)maxt∈[Tn−1,Tn] |(t− Tn−1)(t− Tn)|‖x
(K+1)(Tn)
(K+1)! ‖

= 1
4

∏K
j=2(Tn − Tn−j)(Tn − Tn−1)

2‖x
(K+1)(Tn)
(K+1)! ‖

= ‖ 1
4H

2
n(Hn−1 +Hn) · · · (Hn−K+1 + · · ·+Hn)

x(K+1)(Tn)
(K+1)! ‖.

(40)

c© 2008 European Society of Computational Methods in Sciences and Engineering (ESCMSE)

286 A. Verhoeven et al

Because

‖1
4
H2

n(Hn−1+Hn) · · · (Hn−K+1+ · · ·+Hn)
x(K+1)(Tn)

(K + 1)!
‖ =

Hn

4(Tn − Tn−K−1)
‖x̄n

1 −ȳn
1‖+O(HK+2

n),

it follows that

max
t∈[Tn−1,Tn]

‖x(t)− x̂(t)‖ ≤ Hn

4(Tn − Tn−K−1)
‖x̄n

1 − ȳn
1‖. (41)

Now it indeed follows that ‖rn‖ ≤ ‖r̂n‖ if r̂n = 1
4

−Hn

Tn−Tn−K−1
(x̄n

1 − ȳn
1). At the refined time-grid

we can prove in a similar way that also ‖rn−1,m‖ ≤ ‖r̂n−1,m‖ where r̂
n−1,m is given in (38). �

Before we state the following theorem, we need to define the coupling matrix.

Definition 3 The coupling matrix Kn−1,m ∈ R
dA×dL is defined by

Kn−1,m := BA

d

dt
[C(tn−1,m,x(tn−1,m))]BT

L +BAG(tn−1,m,x(tn−1,m))BT
L, (42)

where C(t,x) =
∂q
∂x (t,x),G(t,x) =

∂j
∂x (t,x).

This coupling matrix appears to be essential for the error analysis.

Theorem 3 The error d
n−1,m
A of the active part satisfies

‖dn−1,m
A ‖ ≤ ‖d̃n−1,m

A ‖+ hn−1,m‖Kn−1,m‖‖BLr
n−1,m‖. (43)

Proof From now on we use the abbreviations t = tn−1,m, h = hn−1,m, ρ̄0 = ρ̄n−1,m
0 , b̃A =

b̃
n−1,m

A ,b = bn−1,m. Clearly, the errors dn,m, d̃
n−1,m

satisfy the following relationship

‖dn−1,m
A − d̃

n−1,m

A ‖ = ‖ρ̄0(qA(t,xA(t),xL(t))− qA(t,xA(t), x̂
n−1,m
L))

+ h(jA(t,xA(t),xL(t))− jA(t,xA(t), x̂
n−1,m
L)) + bA − b̃A‖

≤ ‖ρ̄0 ∂q
A

∂xL
+ h

∂j
A

∂xL
+ ∂bA

∂xL
‖max0≤j≤K ‖x̂n−1,m−j

L − xL(tn−1,m−j)‖.
(44)

Here we assumed that

‖b̃A − bA‖ ≤ ‖∂bA

∂xL

‖ max
0≤j≤K

‖x̂n−1,m−j
L − xL(tn−1,m−j))‖. (45)

Note that Kn−1,m satisfies

Kn−1,m
.
=

ρ̄0
h

∂qA

∂xL

(t,xA(t),xL(t)) +
∂jA
∂xL

(t,xA(t),xL(t)) +
1

h

∂bA

∂xL

(t,xA(t),xL(t)). (46)

Because of Lemma 1 we get

‖dn−1,m
A − d̃

n−1,m

A ‖ ≤ h‖Kn−1,m‖‖rn−1,m
L ‖. (47)

From (47) it immediately follows that (43) is fulfilled. �

Theorem 3 states that the interpolation error because of the interface equals ‖Kn−1,m‖‖rn−1,m
L ‖.

We estimate an upper bound at the coarse time-grid by

r̂nI := ‖K̂n‖‖r̂nL‖. (48)

c© 2008 European Society of Computational Methods in Sciences and Engineering (ESCMSE)

Error analysis of BDF Compound-Fast multirate method ... 287

Table 1: Multirate error estimates for several types of error estimation.
r̂ local discr. error local scaled error combined error

r̂nC ‖d̂n

L‖+ τ‖d̂n

A‖ ‖ênL‖+ τ‖ênA‖ ‖r̂nL‖+ ‖ênL‖+ τ(‖r̂nA‖+ ‖ênA‖)
r̂nI ‖K̂n‖‖r̂nL‖ ‖[BAJnB

T
A]

−1K̂n‖‖r̂nL‖ ‖[BAJnB
T
A]

−1K̂n‖‖r̂nL‖
ˆ̃rn−1,m
A ‖ˆ̃dn−1,m

A ‖ ‖ˆ̃en−1,m
A ‖ ‖r̂n−1,m

A ‖+ ‖ˆ̃en−1,m
A ‖

Here the coupling matrix K could be discretized at the coarse time-grid as follows

Kn−1,m
.
=

1

Hn

BA

[

C(Tn,x
n)−C(Tn−1,x

n−1)
]

BT
L +BAG(Tn,x

n)BT
L =: K̂n. (49)

Now ‖dn−1,m
A ‖ can be bounded by the local error bound

r̂n−1,m
A := ˆ̃rn−1,m

A + hn−1,mr̂nI . (50)

It is also possible to work with other error definitions than the local discretization error, like the
local scaled error or the interpolation error. Let Jn = ρn0C(.)+HnG(.), then the local scaled error
estimate satisfies

ên := J−1
n d̂n. (51)

Besides the discretization errors also the interpolation errors could be included, which results in
the next combined error estimate

σ̂n :=
1

4
‖r̂n‖+ ‖ên‖. (52)

The last error estimate could be useful for the long-term behaviour of stiff circuits which approxi-
mately satisfy Gx = s.

For all types it holds that r̂nC = O(HK+1
n) and ˆ̃rn−1,m

A = O(hk+1
n−1,m) can be estimated and

controlled by the already existing error control mechanism of the normal transient simulation.
However, for the interpolation error r̂nI we have to analyze the equation (43) more profoundly.
Recall that the local discretization error satisfies

‖dn−1,m
A ‖ ≤ ‖d̃n−1,m

A ‖+ hn−1,m‖Kn−1,m‖‖rn−1,m
L ‖.

For
ẽ
n−1,m
A := [BAJn−1,mBT

A]
−1d̃

n−1,m

A (53)

it is easy to prove that

‖en−1,m
A ‖ ≤ ‖ẽn−1,m

A ‖+ hn−1,m‖[BAJn−1,mBT
A]

−1Kn−1,m‖‖rn−1,m
L ‖. (54)

Because of the hierarchical structure of circuit models the original circuit is always solvable, which
implies that Jn is invertible. Here we assume that BAJn−1,mBT

A is an invertible matrix which

can be approximated by BAJnB
T
A, which is only the case if the active part is a solvable system.

Conditions for this property have been given in paragraph 1.4. Table 1 shows the error estimates
for the investigated error types.

3.2 Error control

Adaptive stepsize control of Hn and hn,m can be used to keep r̂nI = O(HK+1
n) and r̂n−1,m

A =

O(hk+1
n−1,m) close to θTOLI and θ ˜TOLA respectively, where 0 < θ < 1 is a safety factor. The

c© 2008 European Society of Computational Methods in Sciences and Engineering (ESCMSE)

288 A. Verhoeven et al

definitions of these error estimates can be found in (34,36,48,50) of the previous paragraph. In
[9, 11, 17, 19] one can read how control theory can be applied to design proper stepsize controllers.

For the Compound-Fast method we assumed the following error model, where r̂∗ = ‖d̂∗‖, φ∗ =
‖Φ̂(., .)‖.

r̂nC = φn
CH

K+1
n , (55)

r̂n,mA = ˆ̃rn,mA + hn,mr̂nI , (56)

ˆ̃rn,mA = φ̃n,m
A hk+1

n,m, (57)

r̂nI = φn
IH

K+1
n . (58)

By means of the stepsizes Hn and hn,m the goal is to satisfy the following error bounds:

r̂nC ≤ TOLC , (59)

ˆ̃rn,mA ≤ TOLA. (60)

Because r̂nC can be measured and only depends on Hn, this value is completely controlled by Hn.
The second condition is more difficult to satisfy, because r̂n,mA can not be estimated directly, while
it depends on Hn and hn,m both. Note that the term hn,mr̂nI depends on hn,m and Hn, because
EPUS (Error Per Unit Step) control is used. For EPS control, the factor hn,m can be removed.
Nevertheless, it appears that EPS control is much more unstable from a numerical point of view.
Therefore, we restrict ourselves to EPUS control. Let hmax be the maximum allowed step in the
refinement phase. If

ˆ̃rn,mA ≤ ˜TOLA = (1− w)TOLA (61)

hmaxr̂
n
I ≤ TOLI = wTOLA (62)

where w ∈ (0, 1) is a properly chosen balance number, we have

r̂n,mA ≤ ˆ̃rn,mA + hmaxr̂
n
I < TOLA.

Now ˆ̃rn,mA can be controlled by hn,m and r̂nI can be controlled by Hn. It is also possible to apply
other techniques than this one, like linearization or alternative models. On the next pages we will
derive which value of w is optimal.

The stepsize controllers can be based on the derived error model. The compound steps are
used to track r̂nC and r̂nI close to TOLC and TOLI , respectively. Furthermore the errors ˆ̃rn,mA are

controlled by the refined time-grid in order that it is close to close to ˜TOLA. The next elementary
multirate stepsize controllers could be used:

HC,n+1 =

(

θTOLC

r̂nC

)
1

K+1

Hn, (63)

HI,n+1 =

(

θTOLI

hmaxr̂nI

)
1

K+1

Hn, (64)

hn,m+1 =

(

θ ˜TOLA

ˆ̃rn,mA

)
1

k+1

hn,m. (65)

Here, θ ∈ (0, 1) is a safety factor which reduces the number of rejected timesteps. The next
compound step is computed as follows:

Hn+1 = min{HC,n+1, HI,n+1}. (66)

One also can use other more advanced stepsize controllers, e.g. digital linear stepsize controllers
[13].

c© 2008 European Society of Computational Methods in Sciences and Engineering (ESCMSE)

Error analysis of BDF Compound-Fast multirate method ... 289

3.3 Optimal value for the balance number

It appears that the balance number w in (61),(62) can be chosen in an optimal way. This optimal
value is called wopt ∈ (0, 1). First we need the following Lemma.

Lemma 2 Let f ∈ C∞((0, 1),R+) such that

∀x ∈ (0, 1) f(x) = A (1− x)−
1
r +B x− 1

s ,

where A,B ∈ R
+ and r, s ∈ N. Then it holds that

∀x ∈ (0, 1) f(x) ≥ f(x∗),

where x∗ ∈ (0, 1) is the unique solution of

A s x
1+ 1

s
∗ = B r (1− x∗)

1+ 1
r .

If r = s one explicitly has

x∗ =
1

1 +
(

A
B

)
r

1+r

∈ (0, 1),

such that

∀x ∈ (0, 1) f(x) ≥ A

(

1 +

(

A

B

)

−r
1+r

)

1
r

+B

(

1 +

(

A

B

)
r

1+r

)
1
r

. (67)

Proof Because f ∈ C∞((0, 1),R+) and is unbounded for x ∈ {0, 1}, f has at least one minimum

x∗ ∈ (0, 1), which satisfies f ′(x∗) = 0. Because on (0, 1) the part A(1 − x)−
1
r is monotonously

decreasing and the part Bx− 1
s is monotonously increasing it can be proved that this minimum is

unique. Because

f ′(x) =
A s x1+ 1

s −B r (1− x)1+
1
r

r s x1+ 1
s (1− x)1+

1
r

,

we get the following equation for x∗:

A s x
1+ 1

s
∗ = B r(1− x∗)

1+ 1
r .

If r = s it is easily derived that

x∗

1− x∗

=

(

B

A

)
r

r+1

, or x∗∗ =

(

B
A

)
r

r+1

1 +
(

B
A

)
r

r+1
=

1

1 +
(

A
B

)
r

r+1
.

Then indeed (67) follows immediately. �

Theorem 4 Let wmax be defined by

wmax :=
TOLC

TOLA

hmaxr̂
n
I

r̂nC
(68)

and assume that w∗ ∈ (0, 1) solves

G(K + 1)w
1+ 1

K+1
∗ = (k + 1)(1− w∗)

1+ 1
k+1 , (69)

where G := E q
(

θTOLA

ˆ̃rA

)

−1
k+1
(

θTOLA

hmaxr̂I

)
1

K+1

. Then the optimal value for w ∈ (0, 1) equals

wopt = min{wmax, w∗}. (70)

c© 2008 European Society of Computational Methods in Sciences and Engineering (ESCMSE)

290 A. Verhoeven et al

Proof There exists a number wmax such that for w ≤ wmax the first constraint (62) becomes
dominant. This means that w always must be smaller than wmax because otherwise the tolerance
level ˜TOLA = (1 − w)TOLA for the refinement becomes too small. This value wmax can be
determined by the property

TOLC

r̂nC
=

wmaxTOLA

hmaxr̂nI
,

which indeed implies (68).
If w ≤ wmax we consider the computational work load Wmult = Wmult(w) for the multirate

method, which has been defined in (12). Because of the error models (57) and (58) and the
definition of wmax we have for w < wmax

h =

(

(1− w)θTOLA

ˆ̃
φA

)
1

k+1

, H =

(

w θTOLA

hmaxφ̂I

)
1

K+1

. (71)

Thus

Wmult = WRT

(

(1− w)θTOLA

ˆ̃
φA

)

−1
k+1

+WCT

(

w θTOLA

hmaxφ̂I

)

−1
K+1

= DR(1−w)
−1
k+1 +DCw

−1
K+1 , (72)

where

DR = WRT

(

θTOLA

ˆ̃
φA

)

−1
k+1

, DC = WCT

(

θTOLA

hmaxφ̂I

)

−1
K+1

.

Because w < wmax, it follows that

DR

DC

=
WR

WC

H

h

(

θTOLA

ˆ̃rA

)

−1
k+1
(

θTOLA

hmaxr̂I

)
1

K+1

.

Clearly, Wmult is unbounded for w = 0 or w = 1, which implies that w ∈ (0, 1). We apply
Lemma 2 to (72) in order to find the optimal balance number w∗. Thus it follows for Wmult, where
A = DR, B = DC and r = k + 1, s = K + 1 that in (0, wmax) the optimal value w∗ indeed solves
(69) with G = DR

DC
. �

If K = k we are able to compute the analytical solution of (69), which is equal to

w∗ =
1

1 +G
K+1
K+2

∈ (0, 1).

Because then

G = E q

(

ˆ̃rA
hmaxr̂I

)
1

K+1

,

we have

w∗ =
1

1 + (E q)
K+1
K+2

(

ˆ̃rA
hmaxr̂I

)
1

K+1

. (73)

From this expression we can conclude that the optimal value w∗ becomes very small if q ≫ 1 and
ˆ̃rA ≫ hmaxr̂I which is the case if the active part behaves much faster and is nearly decoupled.
Note that an upper bound for H disturbs this optimality because then the steps do not satisfy
(71). If H has to be limited it is always better to decrease w such that the limited H exactly fits
for our case. Then the refinement can be done with larger steps.

c© 2008 European Society of Computational Methods in Sciences and Engineering (ESCMSE)

Error analysis of BDF Compound-Fast multirate method ... 291

4 Numerical experiments

In order to test the previous theoretical results we applied it to a large number of test examples
both in MATLAB and in Pstar3. First we show some typical features of the multirate methods
for two small linear test examples. Afterwards, we show the results for four circuit models, see
Figure 4. The last two circuit models are real-world circuit designs which have been modeled
and simulated with the multirate implementation within Pstar. More information about these
numerical experiments, where also dynamical partitioning techniques are used, can be found in
[16, 18, 21].

4.1 Linear test examples

First we look at a circuit model satisfying the next system of DAEs

V1 : V1

R1
+ C1(V̇1 − V̇2) + j1 = 0,

V2 : C1(V̇2 − V̇1) +
1
R2

(V2 − V3) = 0,

V3 : 1
R2

(V3 − V2)− i1E = 0,

V4 : i1E − i2E = 0,
V5 : i2E + 1

R3
(V5 − V6) = 0,

V6 : 1
R3

(V6 − V5)− iL = 0,

V7 : iL + C2V̇7 +
V7

R4
+ j2 = 0,

i1E : V4 − V3 = 0,
i2E : V5 − V4 = 0,

iL : LdiL
dt

− (V7 − V6) = 0.

(74)

Its circuit diagram is shown in the upper part of Figure 2. Afterwards we also look at the next
modified circuit model, corresponding to the lower circuit diagram in Figure 2.

V1 : V1

R1
+ C1(V̇1 − V̇2) + j1 = 0,

V2 : C1(V̇2 − V̇1)− iL = 0,
V3 : iL + 1

R2
(V3 − V4) = 0,

V4 : 1
R2

(V4 − V3)− i1E = 0,

V5 : i1E − i2E = 0,
V6 : i2E + 1

R3
(V6 − V7) = 0,

V7 : 1
R3

(V7 − V6) + C2V̇7 +
V7

R4
+ j2 = 0,

i1E : V5 − V4 = 0,
i2E : V6 − V5 = 0,

iL : LdiL
dt

− (V3 − V2) = 0.

(75)

In both cases we have the following parameter values R1 = 10 Ω, R2 = R3 = R4 = 1 Ω, L = 0.1,
ωs = 2000π

8 , ωf = 10ωs, C1 = C2 = 1
ω2

sL
and sources j1 = sin(ωst), j2 = sin(ωf t). Clearly it

consists of a slow part (the left part) and a fast part, because of the filter behaviour of the cir-
cuit and the different frequencies of the current sources j1 and j2. Note that both circuit models
include additional shorts, which do not affect the solution but make the currents between both
parts explicit available. For the first circuit model we considered the partitions: (xL,xA) =
(

(V1, V2, V3, i
1
E), (V4, . . . , V7, i

2
E , iL)

)

and (xL,xA) =
(

(V1, V2, V3), (V4, . . . , V7, i
1
E , i

2
E , iL)

)

. Both
partitions correspond to current interpolation and voltage interpolation, respectively. Figure 3
shows the numerical solution of the active part for this first circuit model on [0, 10−3]s. It turns

3This is the inhouse analog circuit simulator provided by NXP Semiconductors and also used at Philips.

c© 2008 European Society of Computational Methods in Sciences and Engineering (ESCMSE)

292 A. Verhoeven et al

j1
R

1

C1

R
2

R
3

L
1

C2

R
4 j2

1 2 6 7

0

3 4 5

j1
R

1

C1

R3

C2

R
4 j2

1 7

L
1

R
2

2 3

0

4 5 6

Figure 2: Circuit diagrams of two linear test examples. The nodes 3,4,5 and 4,5,6 are directly
connected by shorts, respectively.

out that current interpolation leads to non-smooth behaviour, but the results of voltage interpo-
lation are very good.

For the second circuit model we also considered current interpolation and voltage interpolation:
(xL,xA) =

(

(V1, . . . , V4, iL, i
1
E), (V5, V6, V7, i

2
E)
)

and (xL,xA) =
(

(V1, . . . , V4, iL), (V5, V6, V7, i
1
E , i

2
E)
)

.
Now it turns out that current interpolation works well, while with voltage interpolation the active
currents are not well computed. Thus current interpolation does not work for the first circuit
model, while voltage interpolation does not work for the second model. The reason for this be-
haviour is that for the first model the active circuit contains the inductor. This ensures that the
differential index of the active DAE is larger than one. In this case current interpolation gives
problems such that the active voltages are not correctly approximated. However, with voltage
interpolation everything is well computed.

For the second model the active circuit does not contain the inductor. This ensures that the
index is one. Thus current interpolation gives no problems such that the currents and voltages
are correctly approximated. However, with voltage interpolation the active currents are not well
computed because they depend now on the derivative of the interpolated slow voltages.

From these experiments it follows that the differential index of the active part of the DAE is
very important. If the index is larger than one, the active solution will depend on the higher order
derivatives of the inputs. This implies that we get problems with linear interpolation because then
the active solution will become discontinuous. For circuit models it is well-known that they are
composed of subcircuits in a hierarchical way. If it is known that these subcircuits have index 1
we can exploit this property to get a good partition, i.e. make partitions with interfaces along
boundaries of subcircuits [8].

c© 2008 European Society of Computational Methods in Sciences and Engineering (ESCMSE)

Error analysis of BDF Compound-Fast multirate method ... 293

0 1 2 3 4 5 6 7 8 9

x 10
−3

−25

−20

−15

−10

−5

0

5

10

15

t

x
A

0 1 2 3 4 5 6 7 8 9

x 10
−3

−25

−20

−15

−10

−5

0

5

10

15

t

x
A

Figure 3: Numerical solution of active part for current (left) and voltage interpolation (right). The
low-frequent signal (blue) becomes non-smooth for current interpolation.

4.2 Inverter chain

Consider the circuit model of an inverter chain, which is described in more detail in [1]. It is a
chain consisting of 500 inverters. If we excite the first node with a short pulse, a voltage wave is
traveling through the chain from left to right. This means that on [0, 10] only the first 8 nodes are
activated yet. We applied a BDF Compound-Fast algorithm on [0, 10] with order 1 on the coarse
grid and order 2 on the refined grid. During the compound phase we only look at the error of the
latent part (τ = 0). During the refinement only the active part, which are the 8 activated nodes, is
simulated. The tolerance levels were equal to TOLL = 1, TOLA = 1 and TOLC = TOLL. Because
of the latency of the slow part, the solution can be determined by just 5 compound steps and 93
refinement steps, while an uniform BDF-method with k = 1 would have used about 93 timesteps.

4.3 Matrix circuit

Figure 4b shows another test example, which is a scalable circuit with M × N subcircuits. The
subcircuits are connected with C-elements which can filter the voltages and currents. The circuit
is driven by M voltage sources which can have different frequencies. The location of the active
part is controlled by the C-elements and the voltage sources. We used the voltage sources ei =
5
2 (1 − cos(ωit)), where ω1 = 100 · 109 and, for i > 1, ωi = 109. Furthermore, M = 5 and N = 10
and the subcircuits are inverter models. The C-elements were chosen such that the 3 subcircuits
S11, S12, S13 are active and nearly decoupled from the other subcircuits. Thus they form an active
part because they are activated by a voltage source with higher frequency. We are interested in
the results of multirate for several parameter values of the C-elements.

First we did a numerical experiment for R1 = R2 = 104, C = L = 10−3. For these values the
C-elements behave like filters for the voltages and currents. We did an Euler Backward multirate
simulation on [0, 10−8]s with w = 0.5, τ = 0 and tolerance levels TOLC =TOLA = 10−1. We
also did a normal Euler Backward simulation with the same tolerance levels. In both cases the
timesteps were automatically controlled based on the tolerance levels. It turned out that the
singlerate simulation required 2018 timesteps and a computational time of 5491 seconds, while the
multirate simulation just required 71 compound steps, 2810 refinement steps and a computational
time of 422 seconds. Thus we got a speed-up factor S ≈ 13.

We also did another experiment where we compared a BDF2 singlerate method with a BDF2
multirate method for TOLC =TOLA = 10−2. We used the balance numbers 0.5 and 10−4. The
errors were estimated by comparing the results with the numerical solution of a singlerate BDF2

c© 2008 European Society of Computational Methods in Sciences and Engineering (ESCMSE)

294 A. Verhoeven et al

e
0
= V

op
- V

g

e
1
(t)

e
2
(t)

e
M
(t)

S
11

C

S
21

S
22C C

C

C

C

C

C

C

S
M1

S
M2C C

C

C

S
1N

S
2N

S
MNC

CS
12

C

C

C

V
g

V
g

V
g

V
g

V
g

V
g

V
g

V
g

V
g

V
g

V
g

V
g

V
g

V
g

V
g

V
g

V
g

V
g

V
g

V
g

V
g

V
g

V
g

V
g

V
g

V
gV

g

V
op

V
op

V
op

V
op

V
op

V
op

R
1

C

L

R
2

 Model C

 Model S

V
g

V
g

V
g

V
g

Figure 4: Diagrams of four multirate circuit models.

simulation with higher tolerance levels TOLC =TOLA = 10−3. From Table 2 and Figure 5 it
follows that the BDF Compound-Fast multirate algorithm is able to produce accurate results in an
efficient way. Furthermore, it is very clear that too large values of the balance number decreases
the efficiency. From the figure it can be derived that the errors are mainly caused by delay errors
in the fast part, because the amplitude is much more accurate.

4.4 Pstar examples

The implementation of the multirate time integration algorithm in Pstar, allows us to obtain results
for various circuits. We consider three practical examples, coming from the actual circuit design.
The high-speed operational transconductance amplifier (HSOTA) and the charge pump are shown
in Figures 4c and 4d.

In the first two circuits there are relatively large bias blocks that have practically constant dy-

Table 2: Statistics of singlerate and multirate BDF2 methods for the Matrix circuit.

method w nC nR comp. time (s) S
max.
error

singlerate 2937 7330 5.8 · 10−2

multirate 0.5 111 3765 668 11 1.8 · 10−1

multirate 10−4 111 3002 612 12 1.8 · 10−1

c© 2008 European Society of Computational Methods in Sciences and Engineering (ESCMSE)

Error analysis of BDF Compound-Fast multirate method ... 295

Figure 5: Numerical solution of slow and fast parts for the Inverter chain and the Matrix circuit.

namics, allowing small numbers of compound steps. Numerical results are summarized in Table 3.
From the formula for the expected speed-up factor (13) we know that the multirate potential of
circuit models depends on the multirate factor q and the work load ratio E. Only if q >> 1 and
0 < E << 1 we can expect a large speed-up factor. The HSOTA model allows a very large mul-
tirate factor q ≈ 207 but has a rather large work load ratio E ≈ 0.5. Thus the expected speed-up
factor equals just S ≈ 1

E+ 1
q

≈ 2. Because the Charge Pump with q ≈ 68 has a smaller workload

ratio, E ≈ 0.12, its estimated speedup factor is indeed larger.
We also considered a ”Sampleadc” circuit, which is a large digital circuit consisting of two

subcircuits with different time constants. The work load ratio E ≈ 1
14 is very small. Although the

clock frequency ratio of both subcircuits is 40, the real multirate factor is just q ≈ 2. This low
multirate factor is due to the high frequency in the slow circuit during the switching times and the
occurring delays in the slow system. Therefore it follows that also the large system with the slow
clock is nearly always active. Thus the expected speed-up factor equals S ≈ 1

E+ 1
q

≈ 1.8. Because

of this low value this example has not been simulated with the multirate implementation of Pstar.
Only if q >> 1 and 0 < E << 1 we can expect a large speed-up factor. For the HSOTA

example the speed-up factor could be increased by using a better partition with smaller E and q.
This could be done by hand but it is preferable to use an automatic procedure, which optimizes
the estimated speed-up factor.

Table 3: Numerical results. The last example has not been simulated with the Pstar multirate
implementation. Notation: d- number of unknowns, NC- number of compound steps, NR- number
of refinement steps, NS- number of single-rate steps, dA- number of active unknowns, S- speed-up
factor.

Circuit name d NC NR NS q dA/d S
HSOTA 61 68 14092 14068 207 50% 2
Charge pump 249 151 10284 7419 68 12% 4.5
Sampleadc ≈ 2NC ≈ 2 7% 1.8

5 Conclusions

The BDF Compound-Fast multirate method appears to be a very powerful method for DAEs and
in particular for circuit simulation. We described in detail how it can be implemented by means
of a coarse and a refined Nordsieck representation. It has been shown how the local discretization

c© 2008 European Society of Computational Methods in Sciences and Engineering (ESCMSE)

296 A. Verhoeven et al

error can be estimated and controlled. Here the interpolation errors because of the interface have
been included. Also in practice we get fast and accurate results with this type of integration
schemes. Automatic partitioning could help to find an optimal partition for which the speed-up
factor is maximized.

Acknowledgment

The authors wish to thank the anonymous referees for their careful reading of the manuscript and
their suggestions. They also would like to thank the circuit designers Mr. Govert Geelen (HSOTA)
and Dr. Marq Kole (Charge Pump) from NXP Semiconductors, for allowing us to use their designs.

References

[1] A. Bartel, M. Günther. A multirate W-method for electrical networks in state-space formula-
tion, J. of Comput. and Applied Maths., Vol. 147, pp. 411-425, 2002.

[2] C.W. Gear, D.R. Wells. Multirate linear multistep methods, BIT, 24 (1984), 484-502.

[3] A. El Guennouni, A. Verhoeven, E.J.W. ter Maten, T.G.J. Beelen. Aspects of Multirate Time
Integration Methods in Circuit Simulation Problems, In: A. Di Bucchianico, R.M.M. Mattheij,
M.A. Peletier, ”Progress in Industrial Mathematics at ECMI 2004”, pp 579-584, Springer,
2006.

[4] M. Günther, A. Kværnø, P. Rentrop. Multirate partitioned Runge-Kutta methods BIT, Vol.41,
pp. 504-514, 2001.

[5] M. Günther, U. Feldmann, J. ter Maten. Modelling and Discretization of Circuit Problems.
In: P. Ciarlet, W. Schilders, J. ter Maten: Handbook of Numerical Analysis, 2005.

[6] E. Hairer, S.P. Nørsett, G. Wanner. Solving Ordinary Differential Equations I, nonstiff prob-
lems. Springer, 1993.

[7] A. Kværnø. Stability of multirate Runge-Kutta schemes, The tenth Int. Conf. on Diff. Equ.,
Plovdiv, Bulgaria, Aug. 1999.

[8] J. ter Maten, A. Verhoeven, A. El Guennouni, Th. Beelen. Multirate hierarchical time inte-
gration for electronic circuits, In: PAMM (Proc. GAMM Annual Meeting 2005), Vol. 5, Issue
1, pp. 819-820, 2005.

[9] R.M.M. Mattheij, J. Molenaar. Ordinary differential equations in theory and practice. SIAM,
2002.

[10] V. Savcenco, W.H. Hundsdorfer, J.G. Verwer. A multirate time stepping strategy for stiff
ODEs, BIT, Vol.47, pp. 137-155, 2007.

[11] A. Sjö. Analysis of computational algorithms for linear multistep methods, PhD Thesis, Lund
University, 1999.

[12] S. Skelboe. Adaptive partitioning techniques for ordinary differential equations, BIT, Numer-
ical Mathematics issue in memory of G. Dahlquist, 2006.

[13] G. Söderlind, L. Wang. Adaptive time-stepping and computational stability, Journal of Com-
putational and Applied Mathematics, Vol.185, pp 225-243, 2006.

[14] M. Striebel, A. Bartel, M. Günther. A Multirate ROW-Scheme for Index-1 Network Equations,
to appear in: Special Issue of Appl. Numer. Math, devoted to the 11th NUMDIFF Conference,
held in Halle, Sept. 2006.

c© 2008 European Society of Computational Methods in Sciences and Engineering (ESCMSE)

Error analysis of BDF Compound-Fast multirate method ... 297

[15] M. Striebel, M. Günther. A charge oriented mixed multirate method for a special class of
index-1 network equations in chip design, Applied Numerical Mathematics, Vol.53, pp. 489-
507, 2005.

[16] A. Verhoeven. Redundancy Reduction of IC Models by Multirate Time-Integration and Model
Order Reduction PhD Thesis, Technische Universiteit Eindhoven, 2008.

[17] A. Verhoeven, A. El Guennouni, E.J.W. ter Maten, R.M.M. Mattheij: A general compound
multirate method for circuit simulation problems, In: A.M. Anile et al: Scientific Computing
in Electrical Engineering, Series Mathematics in Industry, ECMI, Vol. 9, pp. 143-150, 2006.

[18] A. Verhoeven, B. Tasić, T.G.J. Beelen, E.J.W. ter Maten, R.M.M. Mattheij: Automatic
partitioning for multirate methods, In: G. Ciuprina et al:Scientific Computing in Electrical
Engineering, Series Mathematics in Industry, ECMI, Vol. 11, pp. 229-236, 2007.

[19] A. Verhoeven. Automatic control for adaptive time stepping in electrical circuit simulation,
MSc Thesis4, Technische Universiteit Eindhoven, Eindhoven, Technical Note TN-2004/00033,
Philips Research Laboratories, Eindhoven, 2004.

[20] A. Verhoeven, T.G.J. Beelen, A. El Guennouni, E.J.W. ter Maten, R.M.M. Mattheij, B. Tasić.
Stability analysis of BDF Slowest first multirate methods, Int. J. of Computer Mathematics,
Vol.84, pp. 895-923, 2007.

[21] A. Verhoeven, T.G.J. Beelen, A. El Guennouni, E.J.W. ter Maten, R.M.M. Mattheij, B. Tasić.
Error analysis of BDF Compound-Fast multirate method for differential-algebraic equations,
Ext. abstract Copper Mountain, CASA-Report 06-105, 2006.

4http://alexandria.tue.nl/extra2/afstversl/wsk-i/verhoeven2003.pdf
5ftp://ftp.win.tue.nl/pub/rana/rana06-10.pdf

c© 2008 European Society of Computational Methods in Sciences and Engineering (ESCMSE)

