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Fachbereich Mathematik und Informatik
Institut für Mathematik
Freie Universität Berlin

{djurdjev,sharonb,conrad,schuette}@math.fu-berlin.de

Received 20 February, 2011; accepted in revised form 10 March, 2011

Abstract: Complex modular networks appear frequently, notably in the biological or social
sciences. We focus on two current challenges regarding network modularity: the ability to
identify (i) the modules of a given network, and (ii) the hub states as nodes with highest
importance in terms of the communication between modules. Our approach towards these
goals uses random walks as a mean to global analysis of the topology and communication
structure of the network. We show how to adapt recent research regarding coarse graining
of random walks. The resulting algorithms are based on spectral analysis of random walks
and allow (A) an optimal identification of fuzzy assignments of nodes to modules, (B)
computation of the fraction of the overall communication between modules supported by
certain nodes, and (C) determination of the hubs as the nodes with the highest communi-
cation load.
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1 Introduction

With the increasing power of high throughput technologies and storage capacities, more and more
datasets from real-world systems in the form of complex networks become available. Similarly, the
area of network analysis has expanded rapidly and attracted a lot of attention over the last 10
years. Networks are now widely recognized not only as outcomes of complex interactions, but as
key determinants of structure, function, and dynamics in systems that span the biological, physical,
and social sciences [1, 37, 38].

The so called “new science of networks” [4] has introduced novel paradigms of basic system
properties, such as scale-free networks [5], small-world structure [50], and the importance of mo-
tifs [35] and organization into modules [21].
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Complexity Reduction by Finding Modules. Describing systems as abstract networks is a powerful
tool [38], but even as abstractions they remain highly complex. Approaches to reducing the com-
plexity for networks include characterizing the network in terms of simple statistics such as degree
distributions [24], clustering coefficients [50], subgraphs overrepresented relative to an assumed
null model (motifs) [3], and modules [39]. In the case of modules, networks are coarse-grained
into clusters of nodes where nodes belonging to one cluster are highly interconnected, but have
relatively few connections to nodes in other clusters.

Two current challenges regarding network modularity are (i) the ability to quantify to what
extent a given network is “modular” [36, 39] and (ii) the ability to identify the modules of a given
network. In his review article, Newman [37] summarizes a range of techniques for identifying
modules. Some of these ideas have been applied to biological networks, and the results thus far
are mixed but promising.

Biological Networks. The analysis of biological networks is still a very challenging but fascinating
task, due to the complex, non-random organization and the diverse dynamic behaviours of the
underlying systems. The topology of a large number of biological networks has been shown to be
based on a scale-free degree distribution, such as protein-protein interaction networks or metabolic
networks. This implies the existence of highly connected network hubs [5, 6], which may serve as
central distributing elements or linkage points for many regions of a network [6, 23]. For example,
in an early study by Fell and Wagner the authors found the metabolites with the highest degree of
connectivity to be the core of E. coli metabolism [18]. Another study by Jeong et al. found that
the ranking of the most connected metabolites is largely identical for all organisms [24].

Since biological systems are often organized in network modules [19, 39, 42, 20] hubs are also
very often the structural key elements connecting these modules. These modules often represent a
specific function, e.g. a specific synthesis pathway in a metabolic reaction network [43].

In this paper we are mainly interested in two things:
Identifying hubs: In general, nodes are called hubs if the have a high degree or a high centrality.4

We will see later that these concepts are not sufficient and will give a more precise definition.
However, in the vast majority of biological networks that exhibit a scale-free structure, hub-nodes
dominate the topology and are usually of great biological significance.
Identifying modules: Modules are characterized by a higher frequency of connections within
than between modules. Finding these module can help to decompose the complex network structure
into functional sub-units that can be analysed in more detail in subsequent stages [19, 41, 45].

Random Walks. During the last years, new strategies have been developed for studying complex
networks. Particularly, the method of random walks, as a fundamental dynamic process [22] has
been well-established for structural analyses of networks, as it can fully account for local as well as
global topological structure within the network [49, 40] and it is very useful for finding central nodes
which can be used to identify actual hubs [2, 28, 40, 44]. The random walker defines a Markov chain
on the state space that is given by the network’s nodes, for details see below, Section 2. Therefore,
partitioning a network into modules is tantamount with partitioning of losely connected aggregates
of almost uncoupled Markov chains. Since there is a rich literature addressing different variants
of the latter problem [32, 25, 7, 13, 31, 30, 8, 34, 29, 10] we also have a rich collection of possible
approaches for addressing the former problem. The survey [26] will be our starting point; it outlines
some of the fundamental connections between the structure of the network and kinetic properties
of the random walker. However, the discussion in [26] and most of the aforementioned articles

4We identify centrality with the number of shortest paths between modules.
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does not address the following problem: A full partition of the network into modules may not
be appropriate, since the interfaces between modules play an important role these interfaces will
typically contain the nodes that are central to communication between nodes, i.e., the hubs. In a
full partition, however, interface states will always be assigned to exactly one module instead of
being identified as intermediate states between modules. In this contribution to this discussion we
will show how to generalize the random walker approach to modular networks by allowing a partial
partition of the network into modules and additional identification of interface states. Such random
walker based partial or fuzzy partitions have recently been discussed in the literature [10, 47, 27]
but did not address the identification of hub states in the interface. We will address especially this
problem.

Outline. We first introduce and review the theoretical background of the random walker based
approach to modular networks in Section 2. Next we discuss full and fuzzy partition based on that
approach and relate it to the identification of modules in Section 3. Section 4 describes our new
approach on how to identify interface states between modules and hubs as the most important
interface states. Our theoretical investigations are complemented by numerical illustrations in
Section 5.

2 Networks and Random Walkers

Let G(V,E,w) be a network (or a finite weighted graph) with |V | = n nodes, where E ⊂ V × V
denotes the edge set, and the non-negative weights w(x, y) satisfy w(x, y) = 0 if (x, y) ̸∈ E. The
most simple example of the weight matrix is w(x, y) = 1 for all (x, y) ∈ E.

In the following we will assume that the network under consideration is symmetric in the sense
that w(x, y) = w(y, x), i.e., the network is essentially undirected. We moreover assume that the
network is connected, i.e., every node can be reached from every other node.

One can relate the network to a discrete-time Markov chain (Xk) with stochastic matrix P
with entries p(x, y) given by

p(x, y) =
w(x, y)

d(x)
, d(x) =

∑
y∈V

w(x, y).

The random walker defined by the Markov chain then moves from node to node randomly according
to the transition probabilities

P[X1 = y|X0 = x] = p(x, y).

Since the network is connected the random walker has a unique positive invariant measure µ,
that is, if the walker starts µ-distributed then it is again µ-distributed after one step,

∑
x∈V µ(x)p(x, y) =

µ(y). Its explicit form

µ(x) =
d(x)∑

y∈V d(y)
,

allows us to observe immediately that the symmetry of the network implies that the walker is
reversible in time, or, in other words, that the detailed balance condition µ(x)p(x, y) = µ(y)p(y, x)
is satisfied. As a consequence, its transition matrix is equivalent to a symmetric matrix. More
precisely, by defining the weighted scalar product on

⟨u, v⟩µ =
∑
x∈V

u(x)v(x)µ(x),

c⃝ 2011 European Society of Computational Methods in Sciences and Engineering (ESCMSE)
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we find ⟨u, Pv⟩µ = ⟨Pu, v⟩µ. Therefore, the spectrum of P is real-valued and thus can be ordered
as follows:

1 = λ1 > λ2 ≥ λ3 ≥ . . .

where the λj are the eigenvalues, Puj = λjuj , associated to the eigenvectors uj that have to be
orthogonal, ⟨uj , uk⟩µ = δjk. Thus we can write the kth-power of P in the form

P k =
n∑

j=1

λk
j ⟨uj , ·⟩µ uj . (1)

Since P k describes the k-step transition probabilities of the walker,

P[Xk = y|X0 = x] = P k(x, y),

equation (1) means that the eigenvalues λj imply the timescales Tj = 1/| log λj | of all relaxation
processes of the random walker on the network, starting with the trivial timescale T1 = ∞ on which
the random walker relaxes to its invariant measure, via the slowest non-trivial scale T2 to shorter
and shorter relaxation timescales. If some eigenvalues, say λ1, . . . , λm, are particularly close to
1 (significantly closer to 1 in modulus than all others), then the associated timescales are very
long and significantly longer than all other relaxation timescales. These eigenvalues will be called
leading or dominant in the following. Then the subspace spanned by the associated eigenvalues,

Um = span{u1, . . . , um},

allows a low-dimensional approximation of the long-term behavior of the walker on the network:

P k ≈
m∑
j=1

λj⟨uj , ·⟩µ uj = (ΠPΠ)k,

where Π denotes the orthogonal projection of P onto Um. Therefore, one often considers the
so-called diffusion map Φm : V → Rm−1,

Φm(x) =
(
λ2u2, . . . , λmum

)
,

that embeds the network into Rm−1 [25].

3 Modules and Metastable Sets

Modules are parts of the network in which the nodes are more densely connected to each other than
to other parts of the network. What does this mean in terms of properties of the random walker?
In order to answer this question, let us introduce the natural transition probabilities between sets,

p(A,B) = Pµ(X1 ∈ B|x0 ∈ A) =
∑

x∈A,y∈B

µ(x)p(x, y),

that is, the probability that the walker, after having started in set A ⊂ V distributed according
to the invariant measure, will be found in set B ⊂ V after one step. A module, being defined by
the property of being connected internally more densely than externally, can thus be described as
a subset M ⊂ V of the nodes for which the transition probability p(M,M c) of the random walker
from the module to its complement M c = V \M is significantly small, or, vice versa, the residence
probability p(M,M) = 1−p(M,M c) significantly close to 1. In the Markov chain theory such sets
are called metastable sets [9, 10]. However, our definition is lacking the necessary precision, since
“significantly small” will not be sufficient for the identification of the modules of a network. In
order to change this, we will discuss two different concepts for identifying modules.

c⃝ 2011 European Society of Computational Methods in Sciences and Engineering (ESCMSE)
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3.1 Complete modular partition

Let us first consider a full partition of the network into modules, meaning, let us consider m disjoint
sets M1, . . . ,Mm that partition V , ∪m

j=1Mj = V . The best possible partition into modules thus
has to maximize the joint metastability of the sets,

D(M1, . . . ,Mm) =

m∑
j=1

p(Mj ,Mj).

Markov chain theory [48, 46] provides us with the following lower and upper bound for the func-
tional D for arbitrary partitions M1, . . . ,Mm:

(1− δm)2 · λm + . . .+ (1− δ2)
2 · λ2 + λ1 + c ≤ D(M1, . . . ,Mm) ≤ λm + . . .+ λ1, (2)

where c = −λm+1(δ
2
m + . . . + δ22), and δj is the error of the projection of the eigenvector uj onto

the space spanned by the characteristic functions 1Mj of the sets,

δj = ∥(Id−Q)uj∥2,µ, Q projection onto D = span{1M1 , . . . ,1Mm}, (3)

where the projection is orthogonal with regards to the µ-weighted scalar product, and ∥ · ∥2,µ
denotes the associated norm. According to this result, we will find the optimal or at least an
almost optimal partition by minimizing the projection errors δj . We will return to this important
aspect later. For an algorithmic realization of this approach please visit [9, 10].

But first let us explore an equivalent formulation of the above maximization problem for finding
the optimal sets in terms of the diffusion map Φ. To this end, let us follow [26] and consider the
so-called dimension-j centroid Φj(M) of sets M ⊂ V in terms of the M -average of the first j
eigenvectors ui, i = 1, . . . , j,

ūi(M) =
1

µ(M)

∑
y∈M

µ(y)ui(y), Φj(M) = (λ1ū1(M), . . . , λj ūj(M)),

with µ(M) =
∑

x∈M

µ(x) and the so-called average diffusion distance from the centroid within M

d2(M) =
∑
x∈M

µ(x)∥Φn(x)− Φn(M)∥2,

where ∥ · ∥ denotes the usual Euclidean 2-norm in Rn, and Φn(x) is the diffusion map introduced
above but in dimension n. Then, the so-called diffusion map minimization

min[M1,...,Mm]

m∑
i=1

d2(Mi), (4)

is equivalent [26] to

max[M1,...,Mm]

m∑
j=1

p(Mj ,Mj).

This result shows that instead of trying to find the optimal metastable sets (the last maximization
problem) we can project the network into the Euclidean space Rn by means of the diffusion map,
and then solve the clustering problem (4). An algorithm for solving (4), a specific variant of the
well-known k-means clustering algorithm, has been devised in [26].

c⃝ 2011 European Society of Computational Methods in Sciences and Engineering (ESCMSE)
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A further way to identify optimal partition sets by means of a minimization principle can be
derived by considering the eigenvalues of the transition matrix P̂ with entries

P̂ (i, j) = p(Mi,Mj),

that are the probabilities of the jumps of the random walker between the sets. This matrix has
the unique invariant measure µ̂ with µ̂(i) = µ(Mi) and is equivalent to a symmetric matrix such

that its eigenvalues 1 = λ̂1 > λ̂2 ≥ . . . ≥ λ̂m are real-valued again. According to the results in
[12, 11] these eigenvalues approximate the dominant eigenvalues of the original transition matrix
as follows:

E(M1, . . . ,Mm) = max
i=1,...,m

|λi − λ̂i| ≤ (m− 1)λ2 max
i=1,...,m

δ2j , (5)

where the δj again are the projection errors introduced in (3). Analogous results for the relative
error exist also and can be found in [11]. The result (5) shows that we could also identify the optimal
metastable decomposition by means of minimization of the eigenvalue error E(M1, . . . ,Mm). The
interpretation is obvious: The optimal sets are the ones for which the timescales/eigenvalues of
the jump process defined by the resulting jump matrix P̂ optimally approximate the dominant
timescales of the original random walk.

3.2 Fuzzy modular partition

The complete partition of the network into modules has at least one essential drawback: Since we
are interested in identifying the hubs that provide the main connection between modules, we should
not be interested in a complete partition: in a complete partition every node belongs to exactly
one module while we are interested in nodes that cannot be assigned clearly to one of the modules
but somehow fall in between. Thus we should be interested in finding modules M1, . . . ,Mm ⊂ V
that are still disjoint but do not form a full partition:

∪m
j=1Mj ̸= V ⇒ M = V \ ∪m

j=1Mj ̸= ∅.

We can imagine the Mj as the ”cores” of the metastable partition sets discussed in the last section;
we will therefore call them core sets.

The next obvious question now is: To which extent does a node x ∈ M belong to one of the
core sets M1, . . . ,Mm? In other words, how much is x ∈ V committed towards one of the core sets
Mi? In order to answer this question we introduce the committor functions

qi(x) = P[τx(Ci) > τx(Mi)], Ci = ∪m
j=1
j ̸=i

Mj ,

where τx(A) is the first hitting time of the set A ⊂ V by the process (Xt) if started in x, τx(A) =
inf{t ≥ 0 : Xt ∈ A, X0 = x}. Therefore, qi(x) gives us the probability that the walker, if started
in node x, enters the core set Mi earlier than the union Ci of the other core sets. Despite its
seemingly rather abstract definition, the function qi : V → [0, 1] can easily be computed by solving
the following linear problem [33, 12, 11]

(Id− P )qi(x) = 0, ∀x ∈ M

qi(x) = 1, ∀x ∈ Mi (6)

qi(x) = 0, ∀x ∈ Ci

Fortunately we can easily see that the committor functions q1, . . . , qm form a partition of unity,

m∑
i=1

qi(x) = 1, ∀x ∈ V,

c⃝ 2011 European Society of Computational Methods in Sciences and Engineering (ESCMSE)
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such that we can interpret qi(x) as the natural walker-based probability of assignment of node x
to core set Mi.

Let us compare this case to the complete partition case. In the latter case we have the partition
of unity

∑
i 1Mi = 1 resulting from the ”crisp” assignment probabilities 1i(x) of node x to core

set Mi and the jump matrix P̂ between the sets results from Galerkin projection of the original
transition matrix onto the span of the 1i. In the former case, we have the partition of unity∑

i qi = 1 resulting from the ”fuzzy” assignment probabilities qi(x) of node x to core set Mi. Can
we again get the associated jump matrix via Galerkin projection onto the space

Dc = span{q1, . . . , qm}

spanned by the committor functions? It turns out that we can. However, in order to understand
this, we should first ask how is the jump matrix defined.

For analyzing the jump dynamics of the walker (Xk) between the core sets, we introduce the
milestoning process (X̂t)

X̂t = i ⇔ Xσ(t) ∈ Mi,with σ(t) = sup
s≤t

{
Xs ∈

n∪
k=1

Mk

}
, (7)

i.e. the milestoning process is in state i, if the original process came last from core set Mi, cf.
[17, 12, 11]. That is, we assign the walker to core set Mi (if this was the last core set visited) as long
as it has not entered another core set. Defined in this way, the milestoning process represents the
switching dynamics of the original process between the core sets and we can calculate its transition
matrix.

Since the walker is reversible, the probability of finding the walker in x, conditional on that it
last came from core set Mi, is the same as the probability of finding it in x, conditional on that it
will enter Mi next. Thus, it is given by µ(x)qi(x), again involving the committor defined above.
As a consequence, we get a simple expression for the invariant measure of the milestoning process,

µ̂(i) =
∑
x∈V

µ(x)qi(x).

We now compute the jump matrix P̂ between the core sets Mi by the jump matrix that is generated
by the milestoning process, i.e., compute its entries due to

P̂ (i, j) = Pµ[X̂1 = j|X̂0 = i].

As a result of a lengthy computation we find that [12, 11]

P̂ (i, j) =
⟨qi, P qj⟩µ

µ̂(i)
,

which tells us that in fact P̂ can be understood as a Galerkin projection of P onto the space Dc

spanned by the committors. This matrix again is equivalent to a symmetric matrix such that its
eigenvalues 1 = λ̂1 > λ̂2 ≥ . . . ≥ λ̂m are real-valued. According to the results in [12, 11] these
eigenvalues again approximate the leading eigenvalues of the original transition matrix as follows:

E(M1, . . . ,Mm) = max
i=1,...,m

|λi − λ̂i| ≤ (m− 1)λ2 max
i=1,...,m

δ2j , (8)

as in (5), but now the δj are the projection errors of the dominant eigenvectors uj of P onto Dc,
that is, δj = ∥(Id−Q)uj∥2,µ, as in (3) but this time Q denotes the orthogonal projection onto Dc.

c⃝ 2011 European Society of Computational Methods in Sciences and Engineering (ESCMSE)
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Not surprisingly, equation (8) reduces to (5) if the core sets M1, . . . ,Mm form a complete partition
such that qi = 1Mi for all i = 1, . . . ,m.

The obvious next question is how to define the optimal core sets M1, . . . ,Mm. Here we adopt
the last perspective introduced in Section 3.1: The optimal core sets M∗

1 , . . . ,M
∗
m minimize the

above eigenvalue error, i.e.,

M∗
1 , . . . ,M

∗
m = argmin[M1,...,Mm]E(M1, . . . ,Mm). (9)

3.3 Determining the number of modules

Summarizing our above discussion, the leading eigenvalues λ1, . . . , λm of the random walker’s
transition matrix enduce its main metastabilities and thus the information about the modules. In
order to optimally define the modules, we should solve the minimization problem (9) and take the
optimal core sets M∗

1 , . . . ,M
∗
m as the optimal modules.

The only problem we did not really address so far is the problem of how the number m of mod-
ules should be selected optimally. If there really is a gap in the spectrum of P , i.e., |λm+1/λm| ≪ 1
for some small m, then our estimate (2) tells us that the averaged metastability of the optimal
partition into m sets is much higher than that of the optimal m+ 1-partition. Then, m seems to
be a more appropriate choice for the number of modules than m+ 1. However, in many practical
applications we will not have such a clear gap in the spectrum. Thus choosing the number of
modules is an important issue for which we still lack a solution.

Since we have already established the connection between the problem of partitioning and the
diffusion map maximization, it seems natural to turn to diffusion maps again to approximate the
number of modules in our network. From the definition of the diffusion distance we know that
vertices that are connected by many short paths in the networks have a small diffusion distance.
From this we conclude that dense modules in the network, where the vertices are connected by many
short paths, will correspond to dense clusters in the diffusion maps projection in some dimension.
We therefore elected to cluster the diffusion map and use the resulting number of outputted clusters
as an indicator for m. To set aside the question of what dimension diffusion map best represents
the clusters in the data, we opt instead to cluster the diffusion maps in increasing dimensions and
choose as m the number of clusters that appears most frequently and consecutively.

In higher dimensions the points are spread in such a way that possibly overlapping clusters in
lower dimensions become separable in higher dimensions. This is due to the data in high dimensions
being more sparse, and as a result the local neighborhood of a point contains fewer other points. Of
course, if the dimension of the data is too high the points are too spread out to comprise identifiable
clusters (see curse of dimensionality). For a given number of points n, clustering in a dimension
d that is too high results in most of the points becoming isolated outliers, points not belonging to
any cluster. We therefore find clusters in the diffusion maps projections with dimension up to d
where most of the points can be labelled as outliers.

We are now left with the question of which clustering algorithm to apply to the diffusion maps
of different dimensions. The clustering algorithm of choice should have several desirable properties.

1. The algorithm should contain a good estimator for the number of clusters, and not simply
rely on user input.

2. The algorithm should not partition the data, as many clustering algorithms aim to do, but
rather detect clusters and identify the outliers, those points that do not belong to any cluster.
This is in-line with our goal of fuzzy partitions.

3. The algorithm should perform well on density-based data and it should be possible to apply
it efficiently to higher dimensional points in the dimensions determined above.

c⃝ 2011 European Society of Computational Methods in Sciences and Engineering (ESCMSE)
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DBscan. An algorithm that allows to meet our requirements is DBscan [16] (Density-Based Spa-
tial Clustering of Applications with Noise). DBscan is a density based clustering algorithm, mean-
ing that the clusters it outputs have a typical density of points which is considerably higher than
outside of the clusters, while the density within the areas of noise is lower than the density in any
of the clusters. For each point in a cluster, its neighborhood (whose radius is determined by a
user-given parameter) has to contain at least a minimum number of points, so that the density in
the neighborhood has to exceed some threshold. All the points in a cluster are density reachable,
meaning that for every pair of points p1, p2 either p2 is directly in p1’s neighborhood or there is a
path of points from p1 to p2 such that every point is directly reachable from the previous point.
This flexible definition does not restrict the shape of the clusters found, an additional advantage.

PCCA+. Another algorithm that answers most of our requirements is Robust Perron Cluster
Analysis (PCCA+) [9, 10]. PCCA+ is a spectral clustering algorithm that results in a fuzzy
clustering of data, i.e., all states are assigned to clusters within certain assignment probabilities.
Assuming that we want to identify m clusters, for every state i ∈ V and every cluster k ∈
{1, . . . ,m}, PCCA+ calculates the probability χk(i) that state i belongs to cluster k. Functions
χk, k = 1, . . . ,m, called membership functions, give the clustering information of the network
in the sense that they decompose the complete state space into m metastable sets. Therefore,
they are assumed to form a non-negative partition of unity

∑m
k=1 χk(i) = 1, i ∈ V , and to be

almost invariant under P . The goal of PCCA+ is to find a linear transformation matrix A that
transforms U = [u1, . . . , um], the firstm dominant eigenvectors of P , into the membership functions
χ = [χ1, . . . , χm], i.e., χ = AU . In order to get the optimal clustering, A is chosen such that it
maximizes the metastability functional

I(A;U, µ) =

m∑
k=1

⟨χk, Pχk⟩µ
⟨χk,1⟩µ

,

under the constraint that χ = AU forms a non-negative partition of unity; let us denote by Im the
maximum of the functional for given m.

Notice that PCCA+ does not automatically provide us with the exact estimate for the number
of clusters. However, there are several techniques that can suggest the optimal choice mPCCA,
e.g., by running the algorithm for different cluster numbers m of clusters and determine

mPCCA = argmaxm
1

m
Im,

or by determining mPCCA via the minimal overlap between the assignment functions χi; for more
details see [10]. In addition, the PCCA+ algorithm also provides us with a good initial fuzzy
modular partitioning by choosing

Mi = {x ∈ V : χi(x) ≥ θ}

as modules with some positive threshold parameter θ close to 1, and χi being the optimal mem-
bership function.

Determining m. The algorithm to be used in the following for determining the number m of
clusters proceeds as follows: we run DBSCAN on the diffusion map in increasing dimensions, from
1 up to d in accordance with the number of vertices n. We then look at the number of modules
outputted for each dimension, and look for the most popular choice that appears stable, meaning
that the number is outputted when testing several consecutive dimensions. We then assign this
number to m.

c⃝ 2011 European Society of Computational Methods in Sciences and Engineering (ESCMSE)
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4 Hubs and Transition States

Let us now assume that we have chosen the number of modules m appropriately and computed
the optimal core sets M1, . . . ,Mm. In the following let us consider the case that the set of nodes
not assigned to any of the core sets, M = V \ ∪iMi, is not empty, such that every x ∈ M could
be a candidate for being a hub. However, if there is a x ∈ M such that qi(x) > θ > 0.5 for some
threshold value θ that is close enough to 1, e.g., θ = 0.9, then this node is committed to the core
set Mi with an overwhelming probability. All the nodes x ∈ V for which qi(x) > θ, i.e. elements
of Mi together with nodes committed to Mi, will belong to the module

M∗
i = Mi ∪ {x ∈ V : qi(x) ≥ θ},

and thus would not be considered as candidates for being a hub node. The set of candidate hubs
should be

M∗ = {x ∈ V \ ∪iM
∗
i : qi(x) < θ ∀i = 1, . . . ,m}.

Here we will study two different natural concepts for declaring a node x ∈ M∗ a hub. Both concepts
are based on the idea that a hub should be essential for the communication between the modules.
Communication is established by the random walker making transitions between the modules. Let
us concentrate, for example, on transitions from module M∗

i to C∗
i , the union of the other modules.

The frequency of these transitions, given for example by the expected number N of transitions in
unit time, can be taken as a natural measure for the intensity of communication. Consequently, a
hub would be a node that has a high frequency of transitions. A closer look uncovers that every
single transition from module M∗

i to C∗
i can be characterized by the path the random walker takes

from M∗
i to C∗

i . Imagine that we could know the ensemble of such transition paths of the walker
which can help us to distinguish between important and less important transition paths. A hub
would then be a node through which most of the important transition paths go. Thus, we have
found two supposedly different ad-hoc definitions of a hub:

1. x ∈ M∗ is a hub if most of the communication on the way from M∗
i to C∗

i goes through x.

2. x ∈ M∗ is a hub if the most important transition paths between M∗
i to C∗

i go through x.

We will now explore these two possibilities by characterizing the transition rate and the importance
of transition paths. Subsequently we will discuss which of the two possibilities might be superior
algorithmically.

In order to describe the transition behaviour of the network, we will adopt the framework of
transition path theory (TPT) that has been introduced in [14] for specific continuous state spaces
and has been transferred to the discrete setting needed herein in [33]. We start with observing the
nth transition from M∗

i to C∗
i and we focus on the part of the path, when the process transits from

M∗
i to C∗

i . More formally, the sequence of states

Pn = [x
M∗

i
n , x1

n, . . . , x
k
n, x

C∗
i

n ], x
M∗

i
n ∈ M∗

i , x
i
n ∈ M∗, x

C∗
i

n ∈ C∗
i , (10)

is called the nth reactive trajectory. The union of all such trajectories is called the set of reactive
trajectories. Using this, we will study the rate at which the flow goes from one state to the next
one. To this end, let us consider the discrete probability current

f
M∗

i C
∗
i

xy =

{
µ(x) qi(x) p(x, y) (1− qi(y)), if x ̸= y
0, otherwise

(11)

that gives the average flow of reactive trajectories when going from state x to y, per time unit.
Since the underlying process is reversible, the discrete probability current is conserved in every
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node outside the two sets ∑
x∈V

f
M∗

i C
∗
i

xy =
∑
x∈V

f
M∗

i C
∗
i

yx , y ∈ M∗ (12)

The net amount of probability current between two states, will provide us with the measure for the
intensity of communication between the two states along the reactive trajectories. More formally,
the effective current f+

xy defined by

f+
xy = max (f

M∗
i C

∗
i

xy − f
M∗

i C
∗
i

yx , 0). (13)

calculates the net average number of reactive trajectories per time unit, that make transitions from
x to y when going from M∗

i to C∗
i . Again, one can show that if the underlying process is reversible,

the effective current is conserved in each node outside the modules. Furthermore, it holds that the
net amount of reactive trajectories that flow out of M∗

i is the same as the amount that flows into
C∗

i ∑
x∈M∗

i ,y∈V

f+
xy =

∑
x∈V,y∈C∗

i

f+
xy. (14)

Using this we can describe the global transition behavior between two modules and measure how
good the communication between them is. More formally, we consider the transition rate

kM∗
i C

∗
i
=

∑
x∈M∗

i ,y∈V

f+
xy, (15)

that gives the average number of transitions from M∗
i to C∗

i per time unit. But how many of
these transitions are going through a specific node y ∈ M∗? In order to answer this question, we
consider a reaction path as a sequence of states that are visited when going from set M∗

i to set
C∗

i . Defined in this way, a reaction path is a sequence w = (x0, . . . , xs), s > 0, of states such that
x0 ∈ M∗

i , xs ∈ C∗
i ,

xk ∈ M, ∀k = 1, . . . , s− 1,

and
f+
xk,xk+1

> 0, ∀k = 0, . . . , s− 1.

Then, for each state y ∈ M∗ outside the core sets, let us define the predecessor and successor sets,
that contain the states directly before and after y on transition path

Py = {x ∈ V : f+
xy > 0}, Sy = {x ∈ V : f+

yx > 0}.

Using this, the reactive flow through a node y ∈ M∗ is given with

ky =
∑
x∈Pj

f+
xy =

∑
x∈Sy

f+
yx,

as the average number of reactive trajectories that go through the state y when going from set M∗
i

to set C∗
i . An important property of this quantity is

ky ≤ kM∗
i C

∗
i
, y ∈ M∗. (16)

In order to show this, let us fix y ∈ M∗ and consider the set Wy of all reaction paths that go
through node y. Let w1, w2, . . . , wh be a complete enumeration of Wj . It can be shown that these
paths contain no cycles, so there have to be finitely many of them. Let us define rl to be part
of the reactive path wl that starts with y (and ends in set C∗

i ) and G to be the subgraph of the
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entire network that contains only edges and nodes that are contained in at least one of the rl,
l = 1, . . . , h. G is a tree with root y and leaves b in C∗

i , for which we define

kb =
∑
x∈b

∑
z∈G\b

f+
zx.

Since b ⊂ C∗
i and G ⊂ S we have kb ≤ kM∗

i C
∗
i
. Because of the local conservation of the flow and

G \ b ⊂ M∗ we additionally have that ky = kb ≤ kM∗
i C

∗
i
.

Now, for every y ∈ M∗ the percentage of reactive trajectories going through y, out of all reactive
trajectories from M∗

i to C∗
i , defines the importance of y in M∗

i C
∗
i trajectory and is given by

p
M∗

i C
∗
i

y =
ky

kM∗
i C

∗
i

. (17)

Hence, the importance of the node y in the network is given with

py =
∑

i=1,...,m

p
M∗

i C
∗
i

y . (18)

In this sense, a hub is a node which has high importance rate, meaning that the most of commu-
nication goes through this node.

From (13) it may seem that the effective current is connected only to the local behavior of the
network, but nevertheless it also determines how much flow can go through a path. This is because
the flow on the reaction path is bounded by the minimal effective current of an edge involved in
that path. The current that confines the flow is also called the capacity of the reaction path w

c(w) = min
k=0,...,s−1

{f+
xk,xk+1

}, w = (x0, . . . , xs). (19)

The edge with the minimal effective current is called the dynamical bottleneck of the path. In
practical applications, reaction paths that have the maximal minimal current are of particular
interest, since they can transport the most flow. These will be the most important reaction paths.
We can also talk about the second most important paths and so on. For an algorithmic realization
of how to find the important reaction paths please visit [33]. Furthermore, we can assign weights to
the paths in a sense of how ’important’ they are and observe the first few most important reaction
paths. If we then again see a path as a sequence of states, we can also tell for each node how many
of the important reaction paths go through this node and how important these paths are. Thus,
for each node y ∈ M∗ we introduce the M∗

i C
∗
i path importance

s
M∗

i C
∗
i

y =
Ny

NM∗
i C

∗
i

, (20)

where NM∗
i C

∗
i
is the number of most important reaction paths that go from M∗

i to C∗
i , and Ny is

the number of them passing through state y. This quantity will give us the measure for how much
of the communication between M∗

i and C∗
i goes through one state. In this sense, the importance

of node j in the network is

sy =
∑

i=1,...,m

s
M∗

i C
∗
i

y . (21)

Therefore, the states that are taking part in the most intensive communications in the network are
the important states hubs.
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5 Numerical Experiments

We now demonstrate our methods on two example networks. Network 1 consists of 50 nodes, 42
of them arranged in 3 modules, and the remaining nodes serve as intermediary nodes. Network 2
consists of 50 nodes, 45 of them arranged in 5 modules, see Figure 1. To generate the networks, we
used a parameter-driven procedure that first creates dense clusters and then connects them using
additional nodes.

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

(a) Network 1 (b) Network 2

Figure 1: The example networks, both with 50 nodes. Network 1 has three clusters, while network
2 has five.

In the first stage, we input into our procedure the number of modules k we wish to create, the
total number of nodes in the modules and the desired density of edges within modules (in our case
we chose density = 0.8). We then generate a graph for each module with these parameters using the
ER (Erdos-Renyi) model [15]. In the second stage we specify the number t of intermediary nodes
we would like to use to connect the modules (in our examples we chose 8 and 5 nodes, respectively)
and create a set T of these new nodes. We would then like to connect the k modules and t nodes
in a randomized manner. We therefore add all possible edges between pairs of nodes (t1, t2), j ≤ t
in T and between every module and every intermediary node, and randomly remove a subset of
these edges. To connect a module Mi to some node tj we randomly choose a node v in Mi and
construct the edge (v, tj). The edge removal proceeds by arbitrarily ordering these new edges and
removing them one after the other until the removal of some edge e disconnects the graph. Edge
e is then returned to the graph to obtain a connected graph with an arbitrary connection pattern
between the modules and intermediary nodes, as seen in the examples.

We test our methods and attempt to uncover the structure of a network as we engineered it,
identifying the correct number of modules and determining the important hubs. Throughout our
experiments and analysis we proceed as though we know nothing about the way the networks were
constructed, not utilizing any of the parameters used in the generation process.

5.1 Estimating the number of clusters

We begin by determining the number of clusters as described in Section 3.3. Recall that we estimate
the number of clusters using the results of the DBscan clustering algorithm on the diffusion map
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in increasing dimensions. For our choice of the ϵ parameter for DBscan, we observed a window of
robustness for every network, a range within which every choice of ϵ leads to the correct number
of clusters to be outputted. From our experiments, we determine this window to be quite large.
It is from this window that we sample the ϵ for each of our example networks. Figure 2 shows the
2d diffusion map for the two example networks, where each point is labeled with the index of the
network vertex mapped to it. Note that dense areas in the diffusion maps roughly correspond to
clusters already in dimension 2, as can be also seen when zooming into one of the dense areas.

(a) Network 1, labeled
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(b) 2d diffusion map
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(d) network 2, labeled
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(e) 2d diffusion map
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Figure 2: The labeled networks and their 2D diffusion map. Each point in the map is labeled by
the index of the corresponding node. (c) and (f) shows the enlargement of a single dense area of
the 2d diffusion map of the respective networks.

Figure 3 shows the results of running DBscan on the diffusion map of the network in increas-
ing dimensions, giving for each dimension the number of clusters found. We use the Matlab code for
DBscan, freely available from http://code.google.com/p/dmfa07/downloads/detail?name=DBSCAN.M,
with the experimentally determined parameters ϵ = 0.35 for the neighborhood radius and k = 3
for the minimal number of objects considered as a cluster. Looking at the number of outliers in
each run of DBscan we see that indeed around dimension 10 the points are all labeled as outliers,
as they are too far apart to compose clusters. We therefore focus on the first 10 dimensions, and
search for a stable choice of clusters with under 90% outliers. This approach gives us an estimation
of 3 and 5 clusters for the 1st and 2nd networks, respectively. Figure 4 further shows the original
network again, overlayed by the clusters outputted by DBscan for those dimensions where the
number of clusters was estimated correctly.
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(a) DBscan results for network 1. The correct so-
lution of 3 clusters is immediately found in the first
3 dimensions.
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(b) DBscan results for network 2. The correct so-
lution of 5 clusters is found consecutively in di-
mensions 3 and 4.

Figure 3: Results of running DBscan on increasing dimensions, graphing the number of clusters
found for every dimension. The percent of nodes marked as outliers appears next to each data
point. The number of outliers increases with the dimension, finally reaching 100%.

5.2 Finding the optimal core sets and hubs

Using the centroids obtained by DBscan as the initial guess for the core sets, we can find the
optimal sets defined in (9). In order to minimize (8), we apply the Simulated Annealing algorithm5.
Figures 4(b) and 4(d) show the resulting core sets for the two networks, where elements of each
core set are displayed in the same colour. As we already discussed in Section 4, there exist some
nodes that are not assigned to any core set, but they belong to one core set with probability higher
than θ, so they are in some sense committed to this set. Since our optimization strategy using
Simmulated Annealing (SA) will find local minima in most of the cases the parameter θ is also
beneficial in this case: it enriches the choice of modules with the committed nodes. Based on a
variety of numerical experiments, we set θ ≥ 0.7 - this ensures that the solutions found (using
different starting conditions for the SA) are very similar.

We also show these nodes in Figure 4(b) and Figure 4(d), marked as yellow circles, where
the colour of the outline of circles correspond to the colour of the core sets to which the node is
committed to. Note that these nodes are no longer considered as candidates for hubs.

We now continue with finding the possible hubs of networks. In order to do that, we will consider
the two concepts already introduced in Section 4. For every possible hub node, we calculate the
importances (18) and (21). Table 5 shows the resulting importance py, for y ∈ M∗ for both
examples. In the first network, we can see that the node 43 has the highest possible importance
and indeed, this is the node through which all of the communication between all three sets is going.
Nodes 46, 47 and 48 are also shown to be important, since they are the ones that connect a single
core set to the others. In the second example, nodes 46, 47 and 48 have high importance and they
are again the nodes that connect one set to all others.

5We used Matlab’s standard Simulated Annealing (SA) code with standard parameters. We could of course
use other heuristic optimization methods as well (e.g. genetic algorithms, swarm optimization, ...) but given the
potentially very complicated solution space, we dont expect them be beneficial over SA.

c⃝ 2011 European Society of Computational Methods in Sciences and Engineering (ESCMSE)



44 Natasa Djurdjevac, Sharon Bruckner, Tim OF Conrad, Christof Schütte
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(a) DBscan clusters for network 1, dim 2.
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(c) DBscan clusters for network 2, dim 4.
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(d) The 5 core sets for network 2 and the nodes
committed to them.

Figure 4: Comparing the two approaches on networks 1 and 2. Figures (a) and (c) show the
clusters found by DBscan with the correct estimation for the number of clusters. Figures (b) and
(d) show the core sets found, along with the committed nodes, which are marked with circles.
The colour of the outline of circles correspond to the colour of the core set to which the node is
committed. All other labelled nodes, that are not in core sets nor committed nodes to the core
sets, are possible candidates for hubs.

Table 5 also shows the results for the second approach, using the rate defined in (21). Here
we considered the first 15 most important trajectories between each pair of core sets. For the
first network the node 43 has the highest possible rate in this characterization as well, since all
trajectories pass through this node. The second most important nodes are again 46, 47 and 48. In
the second network, we again have nodes 46, 47 and 48 as the most important ones.
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Node y py sy

43 3.00 3.00
44 0.7178 0.6667
45 0.7178 0.6667
46 1.9690 1.9333
47 1.6748 1.6667
48 1.6748 1.6667
49 0.9570 1.00
50 0.2393 0.20

Node y py sy

46 2.4019 2.00
47 1.9817 2.0667
48 1.9334 2.1333
49 0.5528 0.4667
50 0.00 0.00

Figure 5: Rates for the hub candidate nodes for the two networks,calculated as described in Section
4. Maximal possible rate is, in both cases, the number of core sets m.

5.3 A more complex network

We have previously demonstrated the performance of our method on networks for which the struc-
ture between the modules was sparse and modules very clearly defined. We now demonstrate our
analysis on a more complex network, as displayed in figure 6(a). This network has 195 nodes,
100 of them arranged in 7 modules, and is denser than our previous examples. As before, we
begin by running our analysis to find the number of clusters. Our experiments show that the best
assignments to clusters are obtained when taking the DBscan parameter to be ϵ = 5, and the
correct estimate of 7 modules is outputted already for ϵ = 0.65. The chart comparing the diffusion
map dimension and number of clusters is given in figure 6(b), along with the cluster assignments
obtained when taking the first 7 eigenvectors for the diffusion map, shown in figure 7(a). The chart
clearly indicates that the correct solution of 7 clusters is found consecutively, and overlaying the
network with the cluster assignments shows that the outputted clusters are quite consistent with
the modules of the original network.

We proceed, as before, by using the centroids of these clusters as the initial guess for the
simulated annealing algorithm, when minimizing the eigenvalue error (8). Figure 7(b) shows the
resulting 7 optimal core sets, together with the committed nodes marked as circles and coloured
according to the core sets to which they are mostly committed. For all possible hub nodes j, we
calculate the two rates py and sy, described in Section 4. As discussed earlier, the py rate provides
the information about how much of the total communication between 7 core sets goes through the
node j. The rate sy calculates how much of the most intensive-important communications in the
network go through node j. Our algorithm results in identifying node 161 (See Figure 7(b)) as
a node that has significantly higher rates than all the other possible hub nodes in this network.
That means that node 161 is the node that takes part in the most of the communication and even
more in the most intensive communications in the network. A close inspection of the network
reveals that the node 161 is actually a direct connector for 4 core sets: 2, 5, 6 and 7, unlike any
other node in this network. Clearly, our methods correctly identify the nodes most crucial to the
communication between different core sets, contributing to our understanding of the underlying
structure of the network.

c⃝ 2011 European Society of Computational Methods in Sciences and Engineering (ESCMSE)



46 Natasa Djurdjevac, Sharon Bruckner, Tim OF Conrad, Christof Schütte
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(b) DBscan results for network 3. The correct solution
of 7 clusters is found consecutively starting in dimen-
sion 6, up until dimension 11.

Figure 6: Network 3. A dense network and results of running DBscan algorithm for determining
the number of clusters.

6 Concluding Remarks

Random walks on complex networks offer a way to global analysis of the topology of the network.
We have shown how to adapt recent research regarding coarse graining of random walks for the
tasks of finding modules and hub states in complex modular networks. The presented algorithms
are based on spectral analysis of the random walk and allow for (A) an optimal identification of
fuzzy assignments of nodes to clusters/modules, (B) computation of the fraction of the overall
communication between modules that goes through nodes that do not belong to any module, and
(C) determination of the hubs in the network as the nodes with the highest communication load.

There are three important problems that have not be tackled. First of all, the proposed
simulated annealing algorithm for identifying the optimal core sets will not perform efficiently
for large networks with thousands of nodes. An efficient alternative will have to be based on
analytical insight of how to improve core sets given a present core set iterate; this is subject of
further investigation. Second, our above derivation of the optimality of core sets is based on the
fundamental assumption that the dominant eigenvalues are positive, i.e., our approach does not
cover the case (at least not automatically) in which one or several of the dominant eigenvalues
are negative with large modulus. This case can typically appear if the network contains dominant
ring or star structures. However, our approach can be extended to this case by replacing the
transition matrix of the random walk with an appropriately designed rate matrix. This procedure
will be topic of a forthcoming article. Third and lastly, we did not report on applications of our
novel approach to complex real-world networks. This is mainly because there ”correct” results on
modules and hubs in general do not exists and we would have to compare the output of different
algorithms which is a topic of its own right. Future research will demonstrate how our approach
performs on, for example, biological networks in comparison to other algorithms and the insights
that can be gathered through its application.
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(a) DBscan cluster assignment using diffusion map dimension 7.

(b) Optimal core sets with the committed nodes (marked with circles and coloured

according to the colour of the core set to which they are committed).

Figure 7: Network 3. The clusters found by DBscan compared to the optimal core sets calculated
by minimizing the eigenvalue error.
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