e
European Society of Computational Methods {ﬁ] Journal of Numerical Analysis, N
in Sciences and Engineering (ESCMSE) . Industrial and Applied Mathematics E==
(INAIAM)
vol. 6, no. 1-2, 2011, pp. 51-65
ISSN 1790-8140

go—

Solving ODEs, DAEs, DDEs and PDEs in R'

Karline Soetaert’

Centre for Estuarine and Marine Ecology,
Netherlands Institute of Ecology,
4401 NT Yerseke,

The Netherlands

Thomas Petzoldt
Institut fiir Hydrobiologie
Technische Universitit Dresden
01062 Dresden,
Germany

Received 21 February, 2011; accepted in revised form 11 March, 2011

Abstract:

The open-source problem solving software R [1] has become one of the most widely used systems for
statistical data analysis. As it is a powerful interpreted language, it is also very well suited for other
disciplines in scientific computing. One of the fields where considerable progress has been made is the
solution of differential equations.
In this paper we describe a set of recently developed tools, so-called R-packages, to efficiently solve and
analyze initial value problems of differential equations in R. Most of the methods are based on well-tested
open-source numerical codes, combining the robustness and efficiency of these codes with the flexibility of
the R language.
We exemplify the use of these tools by several examples. We start by implementing a well-known test
problem for nonstiff solvers, the Arenstorff orbit ordinary differential equations. Next we solve the
pendulum problem, a DAE of index 3. A description of a bouncing ball shows how roots and events can be
programmed in R. After that we describe how to implement delay differential equations, which we
exemplify with a DDE that is subject to an impulse, triggered at specific times. We end with a rather stiff
partial differential equation, a combustion problem modeled in 2-D.
The presented R packages provide additional facilities to efficiently plot the outcome, to compare different
scenarios, to estimate summary statistics, or to display execution statistics that help in assessing the
performance of a particular method.

© 2011 European Society of Computational Methods in Sciences and Engineering

Keywords: initial value problems, ordinary differential equations, partial differential equations, delay

differential equations, differential algebraic equations, problem solving environment, R

Mathematics Subject Classification: 65L05, 65N06, 65Y15

1. Introduction

Differential equations are the mathematical formalism expressing conservation laws of e.g. energy,
momentum, or mass, and are commonly used in many engineering and scientific disciplines. Real-life
applications only rarely allow finding analytical solutions, but rather require numerical approaches.

Whereas many high-quality numerical codes exist in the scientific literature, these are often
implemented in a language such as FORTRAN or C, and require the user to formulate the
mathematical models in the same language. For scientists that are not trained in programming in these

! published electronically May 15, 2011
2 Corresponding author. E-mail: k.soetaert@nioo.knaw.nl

52 K.Soetaert and T. Petzoldt

languages the need to use advanced numerical codes prevents them from using modeling as a routine
tool in data analysis. Although several problem solving environments (PSE) exist to solve differential
equations, e.g. MATLAB [2], Maple [3], or Mathematica [4] most are quite expensive and many
scientists, for instance from the natural sciences, are not accustomed to using these programming
environments. This is unfortunate, as mathematical models provide a very powerful way of
understanding nature’s complexity, unraveling important processes or for qualitative testing of
alternative hypotheses. Thus, a lot of scientific work could benefit from applying mathematical
modeling tools.

In recent years, the open-source software R [1] has emerged as the main platform for statistical
computation and it is also often used to produce high-quality graphics. As its use in universities is
growing, more and more students become acquainted with the language. Therefore, its extension with
mathematical model solving capabilities opens opportunities to reach a wider audience that can
potentially use scientific and engineering models. Although R is still predominantly applied for
statistical analysis and graphical representation, it is now rapidly becoming more suitable for
mathematical computing, e.g. by recent developments in the field of matrix algebra [5] or for solving
complex differential equations [6]. Recently a number of books have applied R in the field of
environmental modelling [7, 8].

In two previous papers [6, 9] we reported on how to use R for solving initial value problems of ODEs,
DAEs and PDEs, and boundary value problems [9]. Our target audience for these papers consisted of
R-users, which are often not acquainted with applying differential equations. Thus, we selected
relatively simple problems, mainly from the biological sciences, while little was said about
mathematical and implementation aspects, or about R.

Here we elaborate more on the technical aspects of our implementations, and we deliberately choose
more challenging mathematical problems. In addition, we motivate as to why we use R for our
scientific programming.

The paper is organized as follows: first we give a short introduction to the R-software. Then we present
an overview over the differential equation algorithms implemented in a series of R-packages (section 3)
and provide examples of the main classes of differential equations in sections 4 to 9. We end with some
concluding remarks.

2. The R Software

R is both a programming language as well as a software environment providing a wide variety of
statistical, computational and graphical functions, and interfaces to other interpreted or compiled
languages. It originally started as an open-source “dialect” of the S-language, but since then has
become the lingua franca of statistical computing.

There are many reasons to use R also as a PSE. First of all, R is open source, distributed under the
GNU General Public License (http://www.gnu.org/licenses/). As the implemented functions can be
easily accessed and if desired changed, users can build rapidly on the work of others, rather than having
to re-implement software over and over again. Also, freely available source code is often checked more
thoroughly than would be done otherwise. From a philosophical point of view it is natural that
researchers, which are primarily funded by the public sector, share their software without charge.

There are also many obvious advantages of implementing scientific problems, fit them to data, plot the
results, and analyze them statistically in the same environment. R is particularly strong in statistics and
graphics, so that it is excellently suited for these post-processing tasks.

Similar as other interpreted languages (e.g. Matlab ©, [10]), R allows compact vector and matrix
operations, provides efficient high-level commands and can therefore be utilized with relatively limited
programming expertise. Because of that, it is extremely well suited for rapid prototyping, testing
alternative formulations, or performing numerical experiments.

Last but not least, R is distributed in a unique way. Users can add algorithms and functions to the R
base implementation by means of so-called R-packages. Developers can build upon existing packages
hence need not copy the underlying codes. R-packages are shared with the rest of the R-community by
posting them on the Comprehensive R Archive Network (http://CRAN.R-project.org/), where they are
formally quality controlled (e.g. function documentation is mandatory). Once on CRAN, they can be
downloaded and installed directly within the R software, making all the package functions readily
available within R. The distributed repository network consisting of about 80 mirrors gives rapid access
to any updates, while different package version numbers make these updates transparent. Moreover, an

© 2011 European Society of Computational Methods in Sciences and Engineering

Solvi ng ODEs, DAEs, DDEs and PDEs in R 53

archive directory at CRAN makes each package version traceable. The package system contrasts with
other scientific computing languages, where scripts are dispersed over the internet, and that lack R's
modularity.

3. Differential Equation Solvers in R

Rather than implementing new methods we have as much as possible started from well-established,
freely available numerical codes. As these codes are mostly programmed in FORTRAN, while R is
programmed in C, this requires writing a wrapper in the C language that takes care of the interface
between R and the underlying numerical code. In short, the solver method is triggered from an R-
function, in which the input is checked, and some initial preparation is done. This R-function then calls
the wrapper, written in C, where memory is allocated, function pointers assigned to the correct
addresses, and where the options specific to the underlying method are set, after which the actual
integration method, programmed in FORTRAN, is called. During the integration, the solver requires
several times the calculation of derivatives given the current values of dependent and independent
variables. Typically these derivative functions are programmed in R, and interfacing the solver with R
is also done within C-code. Finally, it is also in the C-driver that some advanced methods such as
delays, events, updating of forcing functions, or root finding are implemented (see below).

The preparation done in the R-function and in the C-wrapper allows shielding the user from the
implementation details of the underlying codes. Thus it is possible to have a relatively simple and
uniform interface to all codes, while still the strengths and peculiarities of each solver are kept.

The way this is supported in R is as follows. R-functions comprise two different types of arguments:
some arguments have a default value and need not be specified, unless one is not satisfied with this
default. Other arguments are unspecified in the function definition and must be given a value upon
calling the function.

For instance, the main R-function that solves ordinary differential equations is defined as:

ode (y, func, times, parms, method = “Isoda”, ...)

The mandatory arguments do not have a default value and thus they must to be given a value by the
user. For function ode, they are the initial values of the dependent variables (y), the R-function defining
the initial value problem (func), the parameter values (parms), and the times at which output is wanted.
The integration “method” used by default is “Isoda”; hence this argument need not be specified if one is
content with that.

The “..” (dots argument) allows to pass further arguments valid for the selected solver and need to be
specified only when the user wants more control over the solution process. For instance for Isoda it is
possible to change the default absolute and relative tolerances (default atol = rtol = 1¢™®), the minimal,
maximal and initial time step, the maximum order for Adams (12) and BDF (5) methods, the maximal
number of steps between output intervals (5000) and so on. It is also possible to write a Jacobian
function, or to specify the structure of the Jacobian.

The main packages that deal with differential equations, and implemented by us are in table 1.

Table 1. Main R-packages solving differential equations.

R-package Functionality Reference
deSolve Initial value problems of differential equations [6]
rootSolve Steady state solution of differential equations [11]
bvpSolve Boundary value problems of differential equations [12]

ReacTran | 1-D, 2-D and 3-D reactive transport models over structured grids [13]

R-package deSolve [6], provides functions to solve initial value problems (IVP) of ordinary differential
equations (ODE), partial differential equations (PDE), differential algebraic equations (DAE) and delay
differential equations (DDE). It implements both Adams and backward differentiation formulae (codes
LSODA, LSODAR, LSODE, LSODES from ODEPACK [14, 15], VODE [16] and DASPK [17]), and
the three-stage RADAU II-A implicit Runge-Kutta method [18]. In contrast, several explicit Runge-

© European Society of Computational Methods in Sciences and Engineering

54 K.Soetaert and T. Petzoldt

Kutta methods were de novo implemented (in C-code), based on original publications [19-23] and
using Butcher tables [24] and ideas from [25] for step-size control and interpolation.

Finally, deSolve also includes methods that are especially designed to solve ODEs resulting by
numerical differencing 1-D, 2-D or 3-D PDE problems by the method-of-lines.

R-Package rootSolve [11] provides rootfinding algorithms, implementing amongst others the Newton-
Raphson method [26]. Several functions solve for the steady-state solution of 1-, 2- and 3-dimensional
problems. This is achieved using the same matrix algebra functions as in ODEPACK (the Yale sparse
matrix package, [27]), or from Sparsekit [28], or based on LINPACK's banded matrix solvers [29].

R- Package bvpSolve [12] solves boundary-value problems of ODEs, either by shooting [25, 26], by the
collocation methods COLSYS and COLNEW [25] or based on a mono-implicit Runge-Kutta formula
using the code BVPTWPC [30].

Package ReacTran is a comprehensive collection of R functions for modeling reactive-transport
processes in multi-phase 1-D, 2-D or 3-D model domains with simple geometries. It offers functions
for the generation of structured grids, and discretizes the diffusive-advective-transport equations on
these grids, based on the flux-conservative form of the equations [31]. In addition, it includes several
upstream-biased advection schemes containing flux limiters that are based on total variation
diminishing concepts [32], and whose implementation is based on the GOTM code [33].

The specific features of the solvers in package deSolve are in table 2. For most solvers we added root-
finding capacity, and the possibility to simulate events and delays. Only the newly implemented
explicit Runge-Kutta methods allow to solve a differential equation within a derivative function, or to
call a solver within a solver (‘Nesting’). As they have too many global variables (i.e. common blocks),
none of the existing codes that we used allows the solvers to be run in parallel or in nested calls.

Table 2 Features of the solvers in R-package deSolve; V denotes that the feature was present in
the original code; V* denotes that this feature has been added by us.

Solver y’'=1(ty) | My’=f(t,y) | F(¥’,t,y)=0 | Roots Events Delays | Nesting |
Isoda/lsodar V \ N N

Isode V N N i

Isodes V N N N

vode V N N

daspk V' ' \ V' V'

radau V \ N N N

explicit R-K V N V'

In the next sections we document how to implement, solve and plot several types of differential
equations, using functions from package deSolve.

In order to assess the performance, we report the required computational time. All timing runs were
performed on an Intel® Core ™ 2 Duo CPU T 9300 with a clock frequency of 2.5 GHz.

4. A simple ODE

We start by solving a simple initial value problem, the Arenstorff orbit problem [34], which is a
second-order standard test problem for nonstiff solvers. It describes the closed trajectory for three
bodies moving in the same plane, two have mass p and (1- p), while the third body has negligible mass.
The implementation in R is:

library(deSolve)
Arenstorff = function(t, y, mu) {
D1 =((y[1] +mu)*2+y[2]*2)*(3/2)
D2 = ((y[1]-(1-mu))"2 + y[2]72)(3/2)
dyl=y[3]
dy2 = y[4]
dy3 = y[1] + 2*y[4] - (1-mu)*(y[1]+mu)/D1 - mu*(y[1] - (1-mu))/D2

© 2011 European Society of Computational Methods in Sciences and Engineering

Solvi ng ODEs, DAEs, DDEs and PDEs in R 55

dy4 = y[2] - 2*y[3] - (1-mu)*y[2]/D1 - mu*y[2]/D2
return(list(c(dy1, dy2, dy3, dy4)))
}
mu =0.012277471
yini =c(x=0.994,y =0, dx = 0, dy = -2.00158510637908252240537862224)
out = ode(func = Arenstorff, y = yini, times = seq(from =0, to = 18, by = 0.01), parms =mu)

plot (out[,c("x","y")], type ="1", lwd =2, col = “darkblue”, main = "Arenstorff")
diagnostics(out)

After loading the package deSolve, the function defining the differential equation (Arenstorff) is
implemented. It has time (t), the current state values (y) and the parameter (mu) as input arguments and
it returns the derivative vector, in a list. A ‘list’ in R is a data structure that can contain many different
types of other data.

The equations are solved with R’s ordinary differential equation solver ode, which takes as input
arguments the derivative function (func), the initial values of the state variables (y, a vector), a vector
with the times for which output is wanted, and the parameter value (parms). The length of the initial
value vector y determines the number of differential equations, and hence the number of derivatives
that the solver expects to be returned from func. Note that the bizarre value of the initial condition is
chosen so that at the end, the variables have returned to the initial condition.

The one but last statement plots variable “x” versus “y”, using a line plot (type = “I”) and with line width
double the default (lwd = 2) (figure 1). The code ends with printing the solver diagnostics (results not
shown). This amongst other things tells that Isoda (the default integration method used) selected the
Adams method for solving this problem; 1957 steps were taken, requiring 3949 function evaluations,
and the order of the method last used was 7.

Arenstorff

10

05

-10

X

Figure 1. The Arenstorff ODE

5. DAEs

Many practical problems are more exactly described by a combination of differential and algebraic
equations, so-called differential algebraic equations (DAE). Two solution methods for DAEs are in
package deSolve. R-function radau is based on the standard implicit Runge-Kutta code written by Hairer
and Wanner [18], and is capable of solving differential algebraic equations represented in linearly
implicit form M y’ = f(t, y) with index < 3. Function daspk [17] solves general implicit DAEs of the
form f(y’, y, t) = 0 having index < 1. As it is fairly simple to rewrite ODEs and linearly implicit DAEs
in this form, the R-code is such that daspk can also solve these simpler equations, using the same
formalism as the other solvers.

The R-definition of these solvers are:

© European Society of Computational Methods in Sciences and Engineering

56 K.Soetaert and T. Petzoldt

radau (y, func, times, parms, nind = c(length(y), 0, 0), mass = NULL, ...)
daspk (y, func = NULL, parms, dy = NULL, res = NULL, mass = NULL, ...)

Function radau requires that the number of variables of index 1 to 3 is specified, as a three-valued
vector, in argument nind; the default is to have all variables of index 1. In addition, for solving DAEs,
radau requires that the mass matrix is provided. Problems to be solved by daspk can either be presented
by the derivative function func and a mass matrix (or mass = NULL for ODESs), or via a residual function
res. If used for solving DAEs, daspk also requires specification of the initial value of the derivatives (dy).

The pendulum problem in R

We show how to implement the index 3 pendulum equation, and solve it using radau; the equations for
this problem can be found in [18] or [17]. It is assumed that the squared length of the pendulum (x*+y?)
is 1.

library(deSolve)
Pendulum = function (t, y, p) {
with (as.list(y), {
dx=u
dy=v
du = -lambda * x
dv =-lambda *y-9.8
res=x"2+y"2-1
return (list(c(dx, dy, du, dv, res)))
)
}
yini=c(x=1,y=0,u=0,v=1, lambda=1)
M = diag(nrow = 5); M[5, 5] =0

times = seq(from =0, to = 10, by = 0.01)
out = radau (y = yini, func = Pendulum, parms = NULL, times = times, mass = M, nind = ¢(2, 2, 1))

plot(out, lwd = 2)
plot(out[, c("x", "y")], type ="1", lwd = 2)

The DAE function Pendulum calculates and returns the derivatives of the first 4 variables (dx, ..., dv) and
the residual of the algebraic equation (res). After defining a set of (consistent) initial conditions (yini),
the mass matrix (M) is created. This consists of the unity (or diagonal) matrix with 5 rows and 5
columns, but where the element on position [5, 5] is O rather than 1. The first two equations are of
index 1, followed by two of index 2, one of index 3; this is concatenated in a vector (¢(2, 2, 1)) and
passed to the solver via argument nind. The model is solved for 10 seconds, and output written at 0.01
second intervals (times). The first plot statement depicts at once all model variables against time, using

the variable name as figure title. The last plot statement depicts “y” versus “x”, showing the pendulums
trajectory (figure 2).

© 2011 European Society of Computational Methods in Sciences and Engineering

Solvi ng ODEs, DAEs, DDEs and PDEs in R 57

1.0
0.0

0.5
I
-0.2
1

0.0
I
-06 -04
1 1

-0.5
I
-0.8

-1.0
-1.0

T T T T T T T T T T
4 6 8 10 0 2 4 6 8 10

time time:

lambda

T T
0 2
A 8M Qi
S
o~
T T
[2

25

1

L

20
1

LLLAT I

4 6 8 10 -10 -05 00 05 1.0

time time. X

Figure 2. Output of the pendulum model, an index 3 DAE

6. Roots and Events

In many instances, the computation should be terminated or altered if a certain condition is met, i.e. at
the root of a function. Determining this particular time and the event that ensues is an important part of
the solution. Root detection in ODEs involves, in addition to the derivative function also a “root”
function. If at the root the simulation has to continue but with altered state variables, then a third “event”
function is required.

The problem can be stated as to solve a function y’=f(t, y, p) until a condition g(t*, y*, p) = 0 is met,
after which either the simulation is stopped, or the states are altered according to y,= e(t*, y*, p).

Root tracking has been implemented in the solvers in two ways. In the original RADAU code [18], the
solver calls a subroutine each time it has performed a successful time step. In the R-implementation,
this returns control to the C-wrapper. Here, it is checked whether the integration step includes an output
time, and if so, RADAU’s continuous output formula is invoked to obtain the state variable values at
these time points. It is relatively straightforward to use this function also to check whether a sign
change in a (set of) root function(s) has occurred, and if so, to locate the root, using Brent’s method
[25].

In contrast, root tracking was already present in one of the ODEPACK solvers, LSODAR, and coded in
FORTRAN. For consistency, we implemented the same root-tracking function also for two other
ODEPACK solvers, LSODE and LSODES.

During an “event” the state variables are instantaneously altered. In biological sciences for instance,
this may occur because animals are transferred to new culture medium, or are released in the wild; in
pharmacokinetic modeling, events may represent the injection of a drug in the blood stream. In many
problem solving environments, these jumps in the states have to be taken care of by the user, e.g. the
current integration is stopped, and the user changes the variables and reinitiates the integration. In R
this has been automated, and implemented in C-code. When during a time step, an event occurs, the C-
code changes the state variable values and the solver is informed of this fact, by setting the appropriate
flag, such that it can adjust its time step to the new situation. This way the integration does not need to
be halted.

Events may either be associated with a root (in which case it is not known in advance when they will
occur), or the times at which an event occurs can be defined a priori. It is possible to define in a table
(in R-terminology a data.frame) when an event occurs, which state variables it affects and how. It is
also possible to effectuate the change in an event function (see next example).

© European Society of Computational Methods in Sciences and Engineering

58 K.Soetaert and T. Petzoldt

The Bouncing Ball example in R

The most lucid example of a root function which triggers an event is a ball, falling under the force of
gravity. When it hits the ground, it bounces back, at a velocity, reduced by a certain amount.

The differential equation reads: y’’ = -g, which is rewritten as two first-order ODEs: dy; = y,; dy, = -g,
where y, represents the height of the ball, y, its velocity, g is the gravitational acceleration (9.8 ms™).
An event is triggered when the ball hits the ground, i.e. its height (y;) equals 0, thus the root function is
g(t, y, p) = yi. When the ball hits the ground, the event function is that it bounces (i.e. the ball’s
velocity changes sign) at a velocity that is reduced to 90%. Thus the event is specified as: y; = 0; y,= -
Y209

Implemented in R, and running two scenarios, this becomes:

library(deSolve)

Ballode = function(t, y, parms) {

dyl=y[2]
dy2 =-9.8
return (list(c(dy1, dy2)))

}

Root = function(t, y, parms)
return (y[1])

Event = function(t, y, parms) {

y[1]=0
y[2] =-0.9 * y[2]
return(y)

}

yinil = c(height = 0, v = 20)

yini2 = c(height =0, v = 10)

times = seq(from =0, to = 20, by =0.1)

out = ode(times = times, y = yinil, func = Ballode, parms = NULL, rootfun = Root,
events = list(func = Event, root = TRUE), method = "Isode")
out2 = ode(times = times, y = yini2, func = Ballode, parms = NULL, rootfun = Root,
events = list(func = Event, root = TRUE), method = "Isode")
plot(out, out2, which = "height", main = "bouncing ball", ylab = "height", Iwd = 2)
legend("topright", col = 1:2, Ity = 1:2, legend = c("v = 20", "v = 10"), title = "initial value")

Function Ballode implements the differential equations which represent the ball’s behavior between
events. Function “Root” will return zero when the ball’s height equals 0, at which time the event
function “Event” will change the value of y,. The integration is initiated with the ball’s position at the
ground. It is run twice, with different initial values of the upward velocity v, 20 (yini1) and 10 m s™
(yini2) respectively. The integration is to proceed in the interval [0, 20] and produce output at 0.1
second intervals (times). Although the default solver selected by ode (Isoda) is perfectly capable of
retrieving a root, here we use method “Isode” instead (purely for educational purposes). Finally the
height of the ball is plotted for the two scenarios (outl, out2), and a legend added, thus producing figure
3.

© 2011 European Society of Computational Methods in Sciences and Engineering

Solvi ng ODEs, DAEs, DDEs and PDEs in R 59

bouncing ball

initial value
— v=20
== v=10

/\/\M\

-

v oe

lr“/

"
¥l N
[V AV ’
v vy -
L P M AR VE S N S

T T T T T
0 5 10 15 20

height
0

Figure 3. The bouncing ball example, an ODE including roots and events.

7. Delays

Delay differential equations (DDEs) are similar to ordinary differential equations, except that their
evolution involves past values of the state variable. The solution of delay differential equations
therefore requires knowledge of not only the current state, but also of the state and/or its derivative at a
certain previous time.

The delay differential equation solvers were implemented in R as an extension for most available ODE
and DAE initial value solvers, i.e. for all ODEPACK solvers, for daspk and radau (see table 2). It was
implemented in C-code.

The R-function that solves delay differential equations is defined as:

dede (y, func, times, parms, method = “Isoda”, control = NULL, ...)

where y, func, times, parms and method are the same as before, control can be a list with extra options
relating to the delays and the ... is any option for the selected integration method.

Two utility functions allow retrieving past values of variables and derivatives: lagvalue and lagderiv
respectively.

In order to extract the past information at random time points, the algorithm should be able to
interpolate between two consecutive time-points, embracing the requested time value. Two
interpolation methods are implemented to recover the past values and past derivates of state variables.
In the first method, the values of the state variables and their derivates are stored at each time step, and
cubic Hermite interpolation is used to recover the requested past values. In the second method, we
make use of the dense output strategy in the underlying solvers. For the linear multistep methods (the
ODEPACK solvers, daspk, vode) the necessary information comprises a history of the entire Nordsieck
vector. For the solver radau, we keep a history of the parameters of the interpolating polynomial. In
addition, both types of solvers also require the time-step used at each time point. Practical experience
showed that Hermite interpolation is generally as precise as the dense output strategy. As the memory
requirements of the dense output strategy is quite large compared to Hermite interpolation, the latter is
the default. However, especially for the Adams method which can have order up to 12, the dense output
can occasionally produce much more precise estimates.

For demanding models, the number of time-steps taken may be too large to be held in the buffer. The
history buffer has a fixed size and past values are stored again from the beginning if the end is reached.
The size of this buffer is one of the parameters that can be set in the control argument to the dede
function.

© European Society of Computational Methods in Sciences and Engineering

60 K.Soetaert and T. Petzoldt

A time dependent DDE with impulses in R

We now give an example of a DDE model that exhibits both discrete and continuous behavior over the
time interval of interest. The discrete jumps in the states (events) occur at particular points in time. The
example comes from [35] and describes delayed cellular neural networks with impulsive effects. As the
delays for this problem at times vanish during the integration, this is a relatively difficult problem. The
relatively complex equations can be found in [35] and are not repeated here.

library(deSolve)

Neural = function(t, y, p) {
fun = function(x) return(0.5 * (abs(x+1) - abs(x-1)))

tlagl =t - (1 + cos(t))/2
if (tlagl >0) Lagl = lagvalue(tlagl) else Lagl =yini

tlag2 =t - (1 +sin(t))/2
if (tlag2 > 0) Lag2 = lagvalue(tlag2) else Lag2 =yini

dyl =-6*y[1] + sin(2*t)*fun(y[1]) + cos(3*t)*fun(y[2]) + sin(3*t)*fun(Lag1[1]) + sin(t)*fun(Lag2[2]) + 4*sin(t)
dy2 =-7*y[2] + cos(t)*fun(y[1])/3 + cos(2*t)*fun(y[2])/2 + cos(t)*fun(Lagl[1]) + cos(2*t)*fun(Lag2[2]) + 2*cos(t)

return (list(c(dy1, dy2)))
}

eventfun = function(t, y, p)
return (c(y[1] * 1.2, y[2] * 1.3))

yini =c(yl =-0.5,y2 =0.5)

out = dede (func = Neural, y =yini, times = seq(from = 0, to = 40, by = 0.025), parms =0,
events = list(func = eventfun, times = seq(from = 2, to = 40, by = 2)))

plot(out[,-1], type ="I", lwd = 2)

Note that a local function (fun) is defined within the derivative function (Neural). The past value at
times tlagl and tlag2 are requested via function lagvalue. This is only possible when these requested
times are > 0, else the initial condition vyini is used instead. During the event, the first and second value
of y are increased with 20 and 30 % respectively. Note also how, in the call to the solver dede, the
events are specified to occur at two-daily intervals (times). The last statement plots both variables
versus one another (figure 4).

0.4

0.2

y2
0.0
I

-0.2
1

-0.4
1

y1

Figure 4 A time-dependent DDE with impulses

© 2011 European Society of Computational Methods in Sciences and Engineering

Solvi ng ODEs, DAEs, DDEs and PDEs in R 61

8. PDEs

An important class of differential equations arises by discretising partial differential equations,
particularly parabolic equations that can be solved by the method of lines (MOL). This replaces all the
spatial derivatives with finite differences, but leaves the time derivatives intact, after which an ordinary
differential equation solver is used to solve the system of differential equations. When the system is
stiff, much computational efficiency can be gained and memory requirements reduced by taking into
account the special, sparse, structures that the Jacobian matrices have when discretising 1-D, 2-D or 3-
D problems. In package deSolve, three special-purpose solvers implement the MOL for 1, 2 and 3-D
problems: ode.1D, ode.2D, ode.3D. If the number of species that is described and the number of grid cells
in both directions is known, then the structure of the system's sparsity can be easily derived. For
instance, when the model is one-dimensional and stiff, and the variables are arranged grid-wise, then
the Jacobian matrix will be banded, and this can be efficiently handled by radau, Isode, Isoda, vode and
daspk. As it is more natural to arrange state variables according to species, in the C-implementation of
function ode.1D, the state variables are re-ordered grid-wise before being presented to the solver.

If the model is multi-dimensional (2-D or 3-D), then the non-zero elements are located in a number of
discrete bands parallel to the diagonal, and this structure can also easily be derived from the systems
dimension. ODEs with such — arbitrarily sparse — systems are efficiently solved with function Isodes,
which implements the Yale sparse matrix algebra package from [27].

Note that all these functions solve the linear system that arises by direct (LU) methods. The
preconditioned Krylov methods, originally present in DASPK have not yet been made available in the
R interface of R-function daspk.

Similar to the MOL implementation in R-package deSolve, it is possible to solve for the steady-state
condition of 1-D, 2-D and 3-D problems, using root solvers from R-package rootSolve; they are in
functions steady.1D, steady.2D, and steady.3D. By default these functions use the same matrix algebra
functions, but they also include preconditioned solvers from FORTRAN package sparsekit [28].

The Combustion Problem in R

To illustrate how this works in R, we implement the relatively stiff combustion problem from [31].
Simplified, the reactive-transport equation describes the change in space and time of the reactant U, as
a function of transport fluxes and reactions (reac), and where the flux is by diffusion, with diffusion
coefficient K

aa—(t] =-V-(-KVU)+reac

As in many practical applications, one is not just interested in the value of the state variables, but also
in the fluxes, it is natural to represent this parabolic equation as the gradient of fluxes across the grid
interfaces:

v
ot

=-V . Flux +reac

where

Flux=-KVU

In the combustion example implemented in R, state variables are represented by their values at certain
grid points and spatial derivatives are approximated through differences in these values. Thus, the state
variables are defined in the centre of grid cells, the derivatives and fluxes are defined on the cell
interfaces. The behavior of the solution at the boundaries is prescribed as a known value (=1) for the
downstream boundary, and a zero-flux boundary upstream. It is assumed that the diffusion coefficient
K equals 1:

© European Society of Computational Methods in Sciences and Engineering

62 K.Soetaert and T. Petzoldt

library(deSolve)
library(rootSolve)

N =100
dx=dy=1/N
alfa =1; delta=20;R=5

Combustion = function(t, y, p) {
U =matrix(nrow = N, ncol =N, data=y)

reac = R /alfa/delta * (1+alfa-U) * exp(delta*(1-1/U))

Flux_X = - rbind(0, U[2:N,] - U[1:(N-1),], 1 - U[N,]) / dx
Flux_Y = - cbind(0, U[, 2:N] - U[,1:(N-1)], 1 - U[,N]) / dy
dU =- (Flux_X[2:(N+1),] - Flux_X[1:N,])/dx - (Flux_Y[,2:(N+1)] - Flux_Y[, 1:N])/dy + reac

return (list (dU))
}

std = steady.2D(y = rep(1, N*N), parms = NULL, func = Combustion, nspec = 1,
dimens = ¢(N, N), Irw = 1e6, positive = TRUE)

times = c(seq (from =0, to = 0.24, by = 0.08), seq(from = 0.3, to = 0.36, by = 0.02))
dyn =ode.2D(y = rep(1, N*N), parms = NULL, func = Combustion, nspec = 1,
dimens = ¢(N, N), Irw = 1e6, times = times)

image(dyn, zlim = c(1, 2), mfrow = ¢(3, 3), legend = TRUE, ask = FALSE, main = paste("t =", times))
image(std, main="Steady-state", legend = TRUE, mfrow = NULL)
diagnostics(dyn)

The 2-dimensional domain (of length = 1) is subdivided into discrete computational grid cells, 100 in
the X- and 100 in the Y-direction (N); the grid size in both directions is respectively dx, dy. Thus this
model comprises N*N = 10000 coupled ODE:s.

In the function implementing the derivative (Combustion), the variable values y are passed as a vector.
Before calculating on them, this vector is recast into matrix form (U). R computes as easily on entire
matrices, vectors as on single numbers. As it is much more efficient to perform vector or matrix
calculations rather than using a loop, the reaction rate, reac, is calculated on the entire matrix U at once.
The result of this calculation is a matrix, reac, which is of the same size as U.

Next the flux in X and Y direction is estimated (Flux_X, Flux_Y). For the internal cells, we estimate the
gradient in X direction by subtracting two matrices, divided by dx. The first matrix contains all rows of
U, except the first one, the other contains all rows except the last one. Here the notation 2:N creates a
vector from 2 to N in integer steps. The notation U[2:N,] selects all columns (the second dimension is
left blank), and all but the first row from matrix U. the notation U[,1:(N-1)] selects all except the last
column. Padded to the internal gradients is the upstream boundary (at x = 0), which is a zero flux
boundary, while at the downstream boundary, the value 1 is prescribed, and the gradient becomes 1-
UIN, 1. Binding a row or a column to a matrix is done by R-function rbind (for fluxes in X-direction) and
cbind (Y-direction) respectively. The resulting flux matrices are of dimension (N+1, N) and (N, N+1) for
the X- and Y-direction respectively. Finally, the derivative dU is calculated as the sum of the negative
flux divergence in X- and Y-direction, and the reaction term, and returned as a list.

The model is solved in two ways. First, the steady-state condition is estimated, using function steady.2D
from R-package rootSolve. We specify the number of species (nspec) and the dimensionality of the
problem (dimens). We also need to give an estimate of the size of the work space (Irw). The Newton-
Raphson method that is called by steady.2D requires an initial guess of the solution (y), but as it happens,
for this problem this is not very critical; if we simply set the 10000 values equal to 1 (rep(1, N*N)), the
solver finds the steady-state solution in 19 iterations. Note the argument positive = TRUE. Sometimes
non-realistic solutions exist (e.g. with negative values), and this makes converging to a solution quite
difficult. This option forces the solver to only find positive values (and in this particular case, the solver
fails without this option).

© 2011 European Society of Computational Methods in Sciences and Engineering

Solvi ng ODEs, DAEs, DDEs and PDEs in R 63

Next the model is run dynamically, using solver ode.2D from R-package deSolve. From the start of the
integration till t = 0.3 not much happens, so we initially request output at intervals = 0.08. After t = 0.3
however, the reactant ignites and changes are very fast, so from t = 0.3 to 0.36 we request output at
intervals equal to 0.02. Thus the times vector consists of two combined sequences (times = c(seq (from =
0, to = 0.24, by = 0.08), seq(from =0.3, to = 0.36, by = 0.02))).

The one but last two statements produce image plots for the dynamic simulation and the steady-state
solution respectively (Figure 5). We request the figures to be arranged in 3 rows and 3 columns (mfrow
= ¢(3, 3)), while the steady-state solution should be simply added to this arrangement (mfrow = NULL).

Finally the diagnostics of the dynamic simulation is printed (not shown). From that we learn that Isodes
has taken 448 steps, requiring 848 function evaluations, and 11 Jacobian evaluations and LU
decompositions. The method last used was of order 3. It took about 5.7 seconds to solve the model
dynamically, 1.4 seconds to estimate the steady-state condition for this 10000 state variable model.

t=0 t=0.08 t=0.16

«©

o

>

-

o

o

o

00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
X X X

t=0.24 t=03 t=032

00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10

X X X

t=0.34 t=0.36 Steady-state

20
18
16
14
12

08
08

04
04

00
00

00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10

X X X

Figure 5 The combustion problem, dynamic and steady-state solution

9. Final Remarks

From the user’s point of view good scientific software should be free, flexible, fast and efficient, and
provide powerful analysis methods and good graphical capabilities. For some, user-friendliness is
another requirement, while platform-independence is attractive to those scientists that want to share
their results. While R is certainly free and flexible, runs on all main platforms, and is ideally suited for
post-processing scientific results, it is not per se fast nor is it always considered to be very user-friendly.
R is essentially a scripting language, which may be considered less user-friendly compared to graphical
user interfaces. There do exist R-packages that provide drag-and-drop facility but they are not
commonly used. Rather, at best most R-users work with an (ASCII) editor that provides R-sensitive
syntax.

© European Society of Computational Methods in Sciences and Engineering

64 K.Soetaert and T. Petzoldt

As it is an interpreted language, applications written in R code are not cheap in terms of CPU-time.
Compared to compiled languages, interpreted code often increases CPU time with a factor in the order
of 10 times and even more so if loops are used. In the PDE example (section 8) we tried to overcome
this penalty by operating on entire matrices rather than using a loop. This way, the computational cost
is just a few 10s of percentages (e.g. [6]). However, this approach cannot be applied for all problems,
and in general the more statements appear in the derivative function, the slower R will be compared to
compiled code. As we often use our models in “inverse mode”, e.g. fit the models to data or in MCMC
(Markov-Chain Monte Carlo) simulations [36], we often run a model in the order of le’ — 1e® times,
and then every (fraction of a) second gained is worthwhile. With this in mind, we added to the R-
packages the option to program the derivative function (and — if desired — the Jacobian function) in a
compiled language that produces a DLL (on Windows) or a shared object file (on UNIX like operating
systems), such as FORTRAN or C. Although the setup for such models is still conveniently handled by
R, and these models are solved using the same solvers, this now proceeds by calling compiled code
directly from compiled code, and this reduces the computational cost to a few percent compared to a
model where everything would have been programmed in a compiled language [6]. It would take too
far to elaborate on that, but the interested user is referred to the technical manual [37].

Finally, the solvers implemented in R thus far mainly fall in the category of general problem solvers
rather than being dedicated to solving a particular type of problem in the most efficient way. A lot of
improvement can still be made, e.g. by including functions that also solve more specific problems such
as Hamiltonian systems, or in which PDEs can also be solved using unstructured grids (FEM).

Acknowledgments

The success of the R-project is due to the hard work of the R Core Development Team, and of the
increasing amount of enthusiasts that produce add-on functionality. We also thank our students and
post-docs for testing the packages, and the package users all over the world for giving feedback and
encouragement.

None of this would have been possible without the work of the mathematicians, computer scientists and
others who share their numerical scientific codes. More specifically, we are most indebted to Alan
Hindmarsh, Linda Petzold, Ernst Hairer, Uri Ascher, Bob Russell, Jeff Cash and Francesca Mazzia.
Jeff is also thanked for the invitation to present this work at the ICNAAM conference 2010.

References

[1] R Development Core Team: R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria (2009), URL hup.//www.R-project.org/,
ISBN 3-900051-07-0, 2010.

[2] L.F. Shampine and M.W. Reichelt, The MATLAB ODE Suite, SIAM J. Sci. Comput., 18 1-22
(1997).

[3] M.B. Monagan, K.O. Geddes., K.M. Heal, G. Labahn, S.M. Vorkoetter, J. McCarron, P.
DeMarco, Maple Advanced Programming Guide (Maple 11). Maplesoft, 2007.

[4] S. Wolfram, et. al., Mathematica Documentation, http://reference.wolfram.com/

[5] D. Bates and M. Maechler: Matrix: A Matrix package for R, R package version 0.999375-9,
2008.

[6] K. Soectaert, T. Petzoldt and R.W. Setzer: Solving Differential Equations in R: Package
deSolve, Journal of Statistical Software 33(9) 1-25 (2010). http-//www.jstatsoft.org/v33/i09.

[7] K. Soetaert and P. M. J. Herman: A Practical Guide to Ecological Modelling. Using R as a
Simulation Platform, Springer-Verlag, New York, 2009.

[8] M. H. H. Stevens: 4 Primer of Ecology with R, Springer-Verlag, Berlin, 2009.

[9] K. Soetaert, T. Petzoldt and R.W. Setzer: Solving Differential Equations in R. The R Journal
2(2) 5-15 (2010).

[10] The Mathworks Inc., MATLAB (R) release 2010a (2010), URL hup://www.mathworks.com/,
MATLAB is a registed property of The Mathworks Inc.

[11]K. Soetaert: rootSolve: Nonlinear root finding, equilibrium and steady-state analysis of
ordinary differential equations http.//CRAN.R-project.org/package=rootSolve, R package version
1.6, 2009.

[12]K. Soetaert, J. R. Cash and F. Mazzia: bvpSolve: Solvers for Boundary Value Problems of
Ordinary Differential Equations. http://CRAN.R-project.org/package=bvpSolve, R package
version 1.1,2010.

© 2011 European Society of Computational Methods in Sciences and Engineering

Solvi ng ODEs, DAEs, DDEs and PDEs in R 65

[13]K. Soetaert and F. Meysman: ReacTran: Reactive Transport Modelling in 1D, 2D and 3D
http://CRAN.R-project.org/package=ReacTran, R package version 1.1,2010.

[14]A. C. Hindmarsh: ODEPACK, A Systematized Collection of ODE Solvers, Scientific
Computing, Vol. (Editor: R. Stepleman, IMACS / North-Holland, Amsterdam), IMACS
Transactions on Scientific Computation 1 (1983), 55-64

[15] L. R. Petzold: Automatic Selection of Methods for Solving Stiff and Nonstiff Systems of
Ordinary Differential Equations. SIAM Journal on Scientific and Statistical Computing 4 136—
148 (1983).

[16]P. N. Brown, G. D. Byrne and A. C. Hindmarsh: VODE, A Variable-Coefficient ODE Solver
SIAM Journal on Scientific and Statistical Computing 10 1038—1051 (1989).

[17]K. E. Brenan, S. L. Campbell and L. R. Petzold: Numerical Solution of Initial-Value Problems
in Differential-Algebraic Equations, SIAM Classics in Applied Mathematics, 1996.

[18]E. Hairer, and G. Wanner: Solving Ordinary Differential Equations II: Stiff and Differential-
Algebraic Problems. Second Revised Edition, Springer-Verlag, Heidelberg, 2010.

[19]E. Fehlberg: Klassische Runge-Kutta-Formeln fiinfter and siebenter Ordnung mit
Schrittweiten-Kontrolle, Computing (Arch. Elektron. Rechnen) 4 93-106 (1967).

[20]J. R. Dormand and P. J. Prince: A family of embedded Runge-Kutta formulae. J. Comput.
Appl. Math., 6 19-26 (1980).

[21]P. J. Prince and J. R. Dormand: High order embedded Runge-Kutta formulae. J. Comput. App!.
Math. 7 67-75 (1981).

[22]P. Bogacki and L.F. Shampine. A 3(2) pair of Runge—Kutta formulas. Applied Mathematics
Letters 2 (4) 321-325 (1989)

[23]J. R. Cash and A. H. Karp: A variable order Runge-Kutta method for initial value problems
with rapidly varying right-hand sides. ACM Transactions on Mathematical Software 16 201-
222 (1990).

[24]]. C. Butcher: The Numerical Analysis of Ordinary Differential Equations. Runge-Kutta and
General Linear Methods. Wiley, Chichester, 1987.

[25]W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery: Numerical Recipes, 3™
edition, Cambridge University Press, 2007.

[26]U. M. Ascher, R. M. M. Mattheij and R. D. Russell: Numerical solution of boundary value
problems for ordinary differential equations, Prentice Hall, Englewood Cliffs, N.J., 1988.

[27]S.C. Eisenstat, M.C. Gursky, M.H. Schultz and A.H. Sherman: Yale Sparse Matrix Package. i.
The Symmetric Codes International Journal for Numerical Methods in Engineering 18 1145-
1151, 1982.

[28]Y. Saad, SPARSKIT: a basic tool kit for sparse matrix computations. VERSION 2 (1994).

[29]J. Dongarra, J. Bunch, C. Moler, and G. Stewart: LINPACK Users Guide, SIAM (1979).

[30]J. R. Cash, and F. Mazzia: A new mesh selection algorithm, based on conditioning, for two-
point boundary value codes. J. Comput. Appl. Math. 184 362-381 (2005).

[31]W. Hundsdorfer and J. Verwer: Numerical Solution of Time-Dependent Advection-Diffusion-
Reaction Equations. Springer Series in Computational Mathematics, Springer-Verlag, Berlin,
2003.

[32]J. Pietrzak: The use of TVD limiters for forward-in-time upstream-biased advection schemes
in ocean modeling Monthly Weather Review 126 812830 (1998).

[33]1H. Burchard, K. Bolding and M. Villarreal: GOTM, a general ocean turbulence model. Theory,
applications and test cases, tech Rep EUR 18745 EN. European Commission (1999).

[34] E. Hairer, S.P. Norsett and G. Wanner: Solving Ordinary Differential Equations I: Nonstiff
Problems. Second Revised Edition, Springer-Verlag, Heidelberg, 2009.

[35]S.P. Corwin, S. Thompson and S.M. White: Solving ODEs and DDEs with Impulses. Journal
of Numerical Analysis, Industrial and Applied Mathematics (JNAIAM) 3(1-2) 139-149, 2008.

[36]K. Soectaert and T. Petzoldt: Inverse modelling, sensitivity and Monte Carlo analysis in R
using package FME. Journal of Statistical Software 33 1-28 (2010),
http://www.jstatsoft.org/v33/i03/.

[371K. Soetaert, T. Petzoldt and R.W. Setzer: R-package deSolve, Writing Code in Compiled
Languages (2009), http://CRAN.R-project.org/package=deSolve, package vignette.

© European Society of Computational Methods in Sciences and Engineering

