
Europ
in Sci

Diffe
mom
appli
Whe
impl
math

1 Pub
2 Cor

pean Society of C
iences and Engine

R

Abstract:

The open-so
statistical da
disciplines in
solution of d
In this paper
analyze initi
open-source
the R langua
We exempli
problem for
pendulum pr
programmed
exemplify w
partial differ
The presente
scenarios, to
performance

Keywords: in

differential e

Mathematics

ferential equat
mentum, or ma
ications only r

ereas many h
lemented in
hematical mod

blished electronica

rresponding autho

Computational Me
eering (ESCMSE)

Solving O

Ce

Received 21 Fe

ource problem
ata analysis. A
n scientific com

differential equa
r we describe a
al value proble
numerical code

age.
ify the use of t
r nonstiff solve
roblem, a DAE
d in R. After
with a DDE that
rential equation
ed R packages p
o estimate sum
e of a particular
 ©

nitial value pro

equations, diffe

s Subject Classi

tions are the
ass, and are c
rarely allow f
high-quality
a language

dels in the sam

ally May 15, 201

or. E-mail: k.soeta

ethods
E)

ODEs, DA

Ka
entre for Estu

Netherland
440
Th

Th
Institu

Technisc
0

ebruary, 2011

solving softwa
As it is a powe

mputing. One o
ations.
a set of recently
ems of different
es, combining t

these tools by
ers, the Arens
of index 3. A d
that we descri
t is subject to a
, a combustion
provide additio

mmary statistics
method.
2011 European

blems, ordinary

rential algebrai

ification: 65L0

1.

mathematical
ommonly use

finding analyti
numerical co
such as FOR
me language.

1
aert@nioo.knaw.

AEs, DDE

arline Soetae
uarine and M
ds Institute o
01 NT Yerse
he Netherlan

homas Petzo
ut für Hydrobi
che Universitä
01062 Dresden

Germany

; accepted in

are R [1] has b
erful interpreted
of the fields w

y developed to
tial equations in
the robustness a

several examp
storff orbit ord
description of a
ibe how to im
an impulse, trig
problem mode

onal facilities to
s, or to displa

n Society of Com

y differential eq

ic equations, pr

5, 65N06, 65Y

Introduct

l formalism e
ed in many en
ical solutions,
odes exist in
RTRAN or
For scientists

.nl

 Jo
 Industr

Es and PD

ert2
Marine Ecolo
of Ecology,
eke,
nds

oldt

iologie
ät Dresden
n,

revised form

become one of
d language, it

where considera

ols, so-called R
n R. Most of th
and efficiency o

les. We start b
dinary different
a bouncing ball
mplement delay
ggered at specif
led in 2-D.

o efficiently plo
ay execution st

mputational Me

quations, partial

oblem solving e

15

tion

expressing con
ngineering and
, but rather req
n the scienti
C, and requ

s that are not t

ournal of Numeri
rial and Applied M

 vol. 6, n

DEs in R1

gy,

11 March, 20

the most wide
is also very w

able progress h

R-packages, to
he methods are
of these codes w

by implementin
tial equations.
shows how roo

y differential e
fic times. We en

ot the outcome,
tatistics that he

ethods in Scienc

l differential eq

environment, R

nservation law
d scientific di
quire numerica
fic literature,
ire the user
trained in prog

ical Analysis,
Mathematics
 (JNAIAM)
no. 1-2, 2011, pp.
 ISSN 1790

R1

11

ely used system
well suited for
has been made

efficiently solv
based on well-

with the flexibi

ng a well-know
Next we solv

ots and events c
equations, whic
nd with a rathe

to compare dif
elp in assessin

ces and Engine

quations, delay

R

ws of e.g. en
isciplines. Rea
al approaches
, these are
to formulate

ogramming in

. 51-65
0–8140

ms for
other
is the

ve and
-tested
lity of

wn test
ve the
can be
ch we
er stiff

fferent
ng the

eering

nergy,
al-life
s.
often
e the
these

___K.Soetaert and T. Petzoldt

 © 2011 European Society of Computational Methods in Sciences and Engineering

52

languages the need to use advanced numerical codes prevents them from using modeling as a routine
tool in data analysis. Although several problem solving environments (PSE) exist to solve differential
equations, e.g. MATLAB [2], Maple [3], or Mathematica [4] most are quite expensive and many
scientists, for instance from the natural sciences, are not accustomed to using these programming
environments. This is unfortunate, as mathematical models provide a very powerful way of
understanding nature’s complexity, unraveling important processes or for qualitative testing of
alternative hypotheses. Thus, a lot of scientific work could benefit from applying mathematical
modeling tools.

In recent years, the open-source software R [1] has emerged as the main platform for statistical
computation and it is also often used to produce high-quality graphics. As its use in universities is
growing, more and more students become acquainted with the language. Therefore, its extension with
mathematical model solving capabilities opens opportunities to reach a wider audience that can
potentially use scientific and engineering models. Although R is still predominantly applied for
statistical analysis and graphical representation, it is now rapidly becoming more suitable for
mathematical computing, e.g. by recent developments in the field of matrix algebra [5] or for solving
complex differential equations [6]. Recently a number of books have applied R in the field of
environmental modelling [7, 8].

In two previous papers [6, 9] we reported on how to use R for solving initial value problems of ODEs,
DAEs and PDEs, and boundary value problems [9]. Our target audience for these papers consisted of
R-users, which are often not acquainted with applying differential equations. Thus, we selected
relatively simple problems, mainly from the biological sciences, while little was said about
mathematical and implementation aspects, or about R.
Here we elaborate more on the technical aspects of our implementations, and we deliberately choose
more challenging mathematical problems. In addition, we motivate as to why we use R for our
scientific programming.

The paper is organized as follows: first we give a short introduction to the R-software. Then we present
an overview over the differential equation algorithms implemented in a series of R-packages (section 3)
and provide examples of the main classes of differential equations in sections 4 to 9. We end with some
concluding remarks.

2. The R Software

R is both a programming language as well as a software environment providing a wide variety of
statistical, computational and graphical functions, and interfaces to other interpreted or compiled
languages. It originally started as an open-source “dialect” of the S-language, but since then has
become the lingua franca of statistical computing.
There are many reasons to use R also as a PSE. First of all, R is open source, distributed under the
GNU General Public License (http://www.gnu.org/licenses/). As the implemented functions can be
easily accessed and if desired changed, users can build rapidly on the work of others, rather than having
to re-implement software over and over again. Also, freely available source code is often checked more
thoroughly than would be done otherwise. From a philosophical point of view it is natural that
researchers, which are primarily funded by the public sector, share their software without charge.
There are also many obvious advantages of implementing scientific problems, fit them to data, plot the
results, and analyze them statistically in the same environment. R is particularly strong in statistics and
graphics, so that it is excellently suited for these post-processing tasks.
Similar as other interpreted languages (e.g. Matlab ©, [10]), R allows compact vector and matrix
operations, provides efficient high-level commands and can therefore be utilized with relatively limited
programming expertise. Because of that, it is extremely well suited for rapid prototyping, testing
alternative formulations, or performing numerical experiments.
Last but not least, R is distributed in a unique way. Users can add algorithms and functions to the R
base implementation by means of so-called R-packages. Developers can build upon existing packages
hence need not copy the underlying codes. R-packages are shared with the rest of the R-community by
posting them on the Comprehensive R Archive Network (http://CRAN.R-project.org/), where they are
formally quality controlled (e.g. function documentation is mandatory). Once on CRAN, they can be
downloaded and installed directly within the R software, making all the package functions readily
available within R. The distributed repository network consisting of about 80 mirrors gives rapid access
to any updates, while different package version numbers make these updates transparent. Moreover, an

Solvi ng ODEs, DAEs, DDEs and PDEs in R_______________________________________

 © European Society of Computational Methods in Sciences and Engineering

53

archive directory at CRAN makes each package version traceable. The package system contrasts with
other scientific computing languages, where scripts are dispersed over the internet, and that lack R's
modularity.

3. Differential Equation Solvers in R

Rather than implementing new methods we have as much as possible started from well-established,
freely available numerical codes. As these codes are mostly programmed in FORTRAN, while R is
programmed in C, this requires writing a wrapper in the C language that takes care of the interface
between R and the underlying numerical code. In short, the solver method is triggered from an R-
function, in which the input is checked, and some initial preparation is done. This R-function then calls
the wrapper, written in C, where memory is allocated, function pointers assigned to the correct
addresses, and where the options specific to the underlying method are set, after which the actual
integration method, programmed in FORTRAN, is called. During the integration, the solver requires
several times the calculation of derivatives given the current values of dependent and independent
variables. Typically these derivative functions are programmed in R, and interfacing the solver with R
is also done within C-code. Finally, it is also in the C-driver that some advanced methods such as
delays, events, updating of forcing functions, or root finding are implemented (see below).

The preparation done in the R-function and in the C-wrapper allows shielding the user from the
implementation details of the underlying codes. Thus it is possible to have a relatively simple and
uniform interface to all codes, while still the strengths and peculiarities of each solver are kept.
The way this is supported in R is as follows. R-functions comprise two different types of arguments:
some arguments have a default value and need not be specified, unless one is not satisfied with this
default. Other arguments are unspecified in the function definition and must be given a value upon
calling the function.

For instance, the main R-function that solves ordinary differential equations is defined as:

ode (y, func, times, parms, method = “lsoda”, …)

The mandatory arguments do not have a default value and thus they must to be given a value by the
user. For function ode, they are the initial values of the dependent variables (y), the R-function defining
the initial value problem (func), the parameter values (parms), and the times at which output is wanted.
The integration “method” used by default is “lsoda”; hence this argument need not be specified if one is
content with that.
The “…” (dots argument) allows to pass further arguments valid for the selected solver and need to be
specified only when the user wants more control over the solution process. For instance for lsoda it is
possible to change the default absolute and relative tolerances (default atol = rtol = 1e-6), the minimal,
maximal and initial time step, the maximum order for Adams (12) and BDF (5) methods, the maximal
number of steps between output intervals (5000) and so on. It is also possible to write a Jacobian
function, or to specify the structure of the Jacobian.

The main packages that deal with differential equations, and implemented by us are in table 1.

Table 1. Main R-packages solving differential equations.
R-package Functionality Reference

deSolve Initial value problems of differential equations [6]
rootSolve Steady state solution of differential equations [11]
bvpSolve Boundary value problems of differential equations [12]
ReacTran 1-D, 2-D and 3-D reactive transport models over structured grids [13]

R-package deSolve [6], provides functions to solve initial value problems (IVP) of ordinary differential
equations (ODE), partial differential equations (PDE), differential algebraic equations (DAE) and delay
differential equations (DDE). It implements both Adams and backward differentiation formulae (codes
LSODA, LSODAR, LSODE, LSODES from ODEPACK [14, 15], VODE [16] and DASPK [17]), and
the three-stage RADAU II-A implicit Runge-Kutta method [18]. In contrast, several explicit Runge-

___K.Soetaert and T. Petzoldt

 © 2011 European Society of Computational Methods in Sciences and Engineering

54

Kutta methods were de novo implemented (in C-code), based on original publications [19-23] and
using Butcher tables [24] and ideas from [25] for step-size control and interpolation.
Finally, deSolve also includes methods that are especially designed to solve ODEs resulting by
numerical differencing 1-D, 2-D or 3-D PDE problems by the method-of-lines.

R-Package rootSolve [11] provides rootfinding algorithms, implementing amongst others the Newton-
Raphson method [26]. Several functions solve for the steady-state solution of 1-, 2- and 3-dimensional
problems. This is achieved using the same matrix algebra functions as in ODEPACK (the Yale sparse
matrix package, [27]), or from Sparsekit [28], or based on LINPACK's banded matrix solvers [29].

R- Package bvpSolve [12] solves boundary-value problems of ODEs, either by shooting [25, 26], by the
collocation methods COLSYS and COLNEW [25] or based on a mono-implicit Runge-Kutta formula
using the code BVPTWPC [30].

Package ReacTran is a comprehensive collection of R functions for modeling reactive-transport
processes in multi-phase 1-D, 2-D or 3-D model domains with simple geometries. It offers functions
for the generation of structured grids, and discretizes the diffusive-advective-transport equations on
these grids, based on the flux-conservative form of the equations [31]. In addition, it includes several
upstream-biased advection schemes containing flux limiters that are based on total variation
diminishing concepts [32], and whose implementation is based on the GOTM code [33].

The specific features of the solvers in package deSolve are in table 2. For most solvers we added root-
finding capacity, and the possibility to simulate events and delays. Only the newly implemented
explicit Runge-Kutta methods allow to solve a differential equation within a derivative function, or to
call a solver within a solver (‘Nesting’). As they have too many global variables (i.e. common blocks),
none of the existing codes that we used allows the solvers to be run in parallel or in nested calls.

Table 2 Features of the solvers in R-package deSolve; √ denotes that the feature was present in
the original code; √* denotes that this feature has been added by us.

Solver y’= f(t,y) My’=f(t,y) F(y’,t,y)=0 Roots Events Delays Nesting
lsoda/lsodar √ √ √* √*
lsode √ √* √* √*
lsodes √ √* √* √*
vode √ √* √*
daspk √* √* √ √* √*
radau √ √ √* √* √*
explicit R-K √ √* √*

In the next sections we document how to implement, solve and plot several types of differential
equations, using functions from package deSolve.
In order to assess the performance, we report the required computational time. All timing runs were
performed on an Intel® Core ™ 2 Duo CPU T 9300 with a clock frequency of 2.5 GHz.

4. A simple ODE

We start by solving a simple initial value problem, the Arenstorff orbit problem [34], which is a
second-order standard test problem for nonstiff solvers. It describes the closed trajectory for three
bodies moving in the same plane, two have mass μ and (1- μ), while the third body has negligible mass.
The implementation in R is:

library(deSolve)
Arenstorff = function(t, y, mu) {
 D1 = ((y[1] + mu)^2 + y[2]^2)^(3/2)
 D2 = ((y[1]-(1-mu))^2 + y[2]^2)^(3/2)
 dy1 = y[3]
 dy2 = y[4]
 dy3 = y[1] + 2*y[4] - (1-mu)*(y[1]+mu)/D1 - mu*(y[1] - (1-mu))/D2

Solvi

 dy4
 ret
}
mu
yini =
out =

plot (
diagn

Afte
impl
it ret
type

The
argu
with
value
that
chos

The
doub
show
Adam
and t

Man
equa
pack
and
impl
form
in th
form

The

i ng ODEs, DAE

4 = y[2] - 2*y[3
turn(list(c(dy1,

= 0.012277471
= c(x = 0.994, y
= ode(func = Ar

(out[,c("x","y"
nostics(out)

r loading the
lemented. It h
turns the deriv
s of other data

equations are
uments the der
h the times for
e vector y de
the solver exp

sen so that at t

one but last st
ble the defaul
wn). This amo
ms method fo
the order of th

ny practical pr
ations, so-call
kage deSolve. R
Wanner [18]

licit form M y
m f(y’, y, t) = 0
his form, the

malism as the o

R-definition o

Es, DDEs and P

] - (1-mu)*y[2]/
 dy2, dy3, dy4)

1
 = 0, dx = 0, dy
renstorff, y = yi

")], type = "l", lw

e package de
as time (t), th
vative vector,
a.

e solved with
rivative functi
r which outpu
termines the
pects to be re
the end, the va

tatement plots
t (lwd = 2) (fi
ongst other th
or solving this
he method last

roblems are m
ed differentia
R-function rad
, and is capa
y’ = f(t, y) wi
0 having inde
R-code is su

other solvers.

of these solver

PDEs in R___

 © European

/D1 - mu*y[2]/
))

= -2.001585106
ni, times = seq(

wd = 2, col = “d

eSolve, the fu
he current state

 in a list. A ‘li

h R’s ordinar
ion (func), the
ut is wanted, a
number of di

eturned from f
ariables have r

s variable “x”
figure 1). The
hings tells tha
s problem; 19
t used was 7.

Figure 1

more exactly
al algebraic eq
dau is based on
able of solvin
ith index ≤ 3.
x ≤ 1. As it is

uch that daspk

rs are:

n Society of Co

/D2

637908252240
(from = 0, to = 1

darkblue”, main

unction defin
e values (y) an
ist’ in R is a d

ry differential
e initial value
and the param
ifferential equ
func. Note tha
returned to the

versus “y”, us
code ends w

at lsoda (the d
957 steps wer

. The Arenst

5. DAEs

described by
quations (DA
n the standard

ng differential
. Function da
s fairly simple
k can also so

mputational M

0537862224)
18, by = 0.01), p

n = "Arenstorff"

ning the diffe
nd the parame
data structure

l equation so
s of the state

meter value (p
uations, and h
at the bizarre
e initial condi

sing a line plot
with printing th
default integra
e taken, requi

orff ODE

y a combinatio
AE). Two solu
d implicit Run
l algebraic eq
spk [17] solve
e to rewrite O
lve these sim

Methods in Scien

parms = mu)

")

erential equat
eter (mu) as in
that can cont

lver ode, whi
variables (y,

parms). The le
hence the num

value of the
tion.

t (type = “l”) a
he solver diag
ation method
iring 3949 fun

on of differen
ution methods
nge-Kutta code
quations repre
es general imp
DEs and linea

mpler equation

nces and Engine

tion (Arenstor
nput argument
tain many diff

hich takes as
a vector), a v
ength of the i

mber of deriva
initial conditi

and with line w
gnostics (result

used) selecte
nction evalua

ntial and alge
s for DAEs a
e written by H
esented in lin
plicit DAEs o
arly implicit D
ns, using the

_

eering

55

rff) is
ts and
ferent

input
vector
initial
atives
ion is

width
ts not
ed the
tions,

ebraic
are in
Hairer
nearly
of the
DAEs
same

___K.Soetaert and T. Petzoldt

 © 2011 European Society of Computational Methods in Sciences and Engineering

56

radau (y, func, times, parms, nind = c(length(y), 0, 0), mass = NULL, …)
daspk (y, func = NULL, parms, dy = NULL, res = NULL, mass = NULL, …)

Function radau requires that the number of variables of index 1 to 3 is specified, as a three-valued
vector, in argument nind; the default is to have all variables of index 1. In addition, for solving DAEs,
radau requires that the mass matrix is provided. Problems to be solved by daspk can either be presented
by the derivative function func and a mass matrix (or mass = NULL for ODEs), or via a residual function
res. If used for solving DAEs, daspk also requires specification of the initial value of the derivatives (dy).
 The pendulum problem in R
We show how to implement the index 3 pendulum equation, and solve it using radau; the equations for
this problem can be found in [18] or [17]. It is assumed that the squared length of the pendulum (x2+y2)
is 1.

library(deSolve)
Pendulum = function (t, y, p) {
 with (as.list(y), {
 dx = u
 dy = v
 du = -lambda * x
 dv = -lambda * y - 9.8
 res = x^2 + y^2 -1
 return (list(c(dx, dy, du, dv, res)))
 })
}
yini = c(x = 1, y = 0, u = 0, v = 1, lambda = 1)
M = diag(nrow = 5); M[5, 5] = 0

times = seq(from = 0, to = 10, by = 0.01)
out = radau (y = yini, func = Pendulum, parms = NULL, times = times, mass = M, nind = c(2, 2, 1))

plot(out, lwd = 2)
plot(out[, c("x", "y")], type = "l", lwd = 2)

The DAE function Pendulum calculates and returns the derivatives of the first 4 variables (dx, …, dv) and
the residual of the algebraic equation (res). After defining a set of (consistent) initial conditions (yini),
the mass matrix (M) is created. This consists of the unity (or diagonal) matrix with 5 rows and 5
columns, but where the element on position [5, 5] is 0 rather than 1. The first two equations are of
index 1, followed by two of index 2, one of index 3; this is concatenated in a vector (c(2, 2, 1)) and
passed to the solver via argument nind. The model is solved for 10 seconds, and output written at 0.01
second intervals (times). The first plot statement depicts at once all model variables against time, using
the variable name as figure title. The last plot statement depicts “y” versus “x”, showing the pendulums
trajectory (figure 2).

Solvi ng ODEs, DAEs, DDEs and PDEs in R_______________________________________

 © European Society of Computational Methods in Sciences and Engineering

57

Figure 2. Output of the pendulum model, an index 3 DAE

6. Roots and Events

In many instances, the computation should be terminated or altered if a certain condition is met, i.e. at
the root of a function. Determining this particular time and the event that ensues is an important part of
the solution. Root detection in ODEs involves, in addition to the derivative function also a “root”
function. If at the root the simulation has to continue but with altered state variables, then a third “event”
function is required.
The problem can be stated as to solve a function y’=f(t, y, p) until a condition g(t*, y*, p) = 0 is met,
after which either the simulation is stopped, or the states are altered according to yn= e(t*, y*, p).

Root tracking has been implemented in the solvers in two ways. In the original RADAU code [18], the
solver calls a subroutine each time it has performed a successful time step. In the R-implementation,
this returns control to the C-wrapper. Here, it is checked whether the integration step includes an output
time, and if so, RADAU’s continuous output formula is invoked to obtain the state variable values at
these time points. It is relatively straightforward to use this function also to check whether a sign
change in a (set of) root function(s) has occurred, and if so, to locate the root, using Brent’s method
[25].
In contrast, root tracking was already present in one of the ODEPACK solvers, LSODAR, and coded in
FORTRAN. For consistency, we implemented the same root-tracking function also for two other
ODEPACK solvers, LSODE and LSODES.

During an ”event” the state variables are instantaneously altered. In biological sciences for instance,
this may occur because animals are transferred to new culture medium, or are released in the wild; in
pharmacokinetic modeling, events may represent the injection of a drug in the blood stream. In many
problem solving environments, these jumps in the states have to be taken care of by the user, e.g. the
current integration is stopped, and the user changes the variables and reinitiates the integration. In R
this has been automated, and implemented in C-code. When during a time step, an event occurs, the C-
code changes the state variable values and the solver is informed of this fact, by setting the appropriate
flag, such that it can adjust its time step to the new situation. This way the integration does not need to
be halted.

Events may either be associated with a root (in which case it is not known in advance when they will
occur), or the times at which an event occurs can be defined a priori. It is possible to define in a table
(in R-terminology a data.frame) when an event occurs, which state variables it affects and how. It is
also possible to effectuate the change in an event function (see next example).

0 2 4 6 8 10

-1
.0

-0
.5

0.
0

0.
5

1.
0

x

time

0 2 4 6 8 10

-1
.0

-0
.8

-0
.6

-0
.4

-0
.2

0.
0

y

time

0 2 4 6 8 10

-4
-2

0
2

4

u

time

0 2 4 6 8 10

-3
-2

-1
0

1
2

3

v

time

0 2 4 6 8 10

0
5

10
15

20
25

30

lambda

time

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.8

-0
.6

-0
.4

-0
.2

0.
0

x

y

___K.Soetaert and T. Petzoldt

 © 2011 European Society of Computational Methods in Sciences and Engineering

58

The Bouncing Ball example in R

The most lucid example of a root function which triggers an event is a ball, falling under the force of
gravity. When it hits the ground, it bounces back, at a velocity, reduced by a certain amount.

The differential equation reads: y’’ = -g, which is rewritten as two first-order ODEs: dy1 = y2; dy2 = -g,
where y1 represents the height of the ball, y2 its velocity, g is the gravitational acceleration (9.8 ms-2).
An event is triggered when the ball hits the ground, i.e. its height (y1) equals 0, thus the root function is
g(t, y, p) = y1. When the ball hits the ground, the event function is that it bounces (i.e. the ball’s
velocity changes sign) at a velocity that is reduced to 90%. Thus the event is specified as: y1 = 0; y2= -
y2·0.9

Implemented in R, and running two scenarios, this becomes:

library(deSolve)

Ballode = function(t, y, parms) {
 dy1 = y[2]
 dy2 = -9.8
 return (list(c(dy1, dy2)))
}

Root = function(t, y, parms)
 return (y[1])

Event = function(t, y, parms) {
 y[1] = 0
 y[2] = -0.9 * y[2]
 return(y)
}
yini1 = c(height = 0, v = 20)
yini2 = c(height = 0, v = 10)
times = seq(from = 0, to = 20, by = 0.1)

out = ode(times = times, y = yini1, func = Ballode, parms = NULL, rootfun = Root,
 events = list(func = Event, root = TRUE), method = "lsode")
out2 = ode(times = times, y = yini2, func = Ballode, parms = NULL, rootfun = Root,
 events = list(func = Event, root = TRUE), method = "lsode")
plot(out, out2, which = "height", main = "bouncing ball", ylab = "height", lwd = 2)
legend("topright", col = 1:2, lty = 1:2, legend = c("v = 20", "v = 10"), title = "initial value")

Function Ballode implements the differential equations which represent the ball’s behavior between
events. Function “Root” will return zero when the ball’s height equals 0, at which time the event
function “Event” will change the value of y2. The integration is initiated with the ball’s position at the
ground. It is run twice, with different initial values of the upward velocity v, 20 (yini1) and 10 m s-1
(yini2) respectively. The integration is to proceed in the interval [0, 20] and produce output at 0.1
second intervals (times). Although the default solver selected by ode (lsoda) is perfectly capable of
retrieving a root, here we use method “lsode” instead (purely for educational purposes). Finally the
height of the ball is plotted for the two scenarios (out1, out2), and a legend added, thus producing figure
3.

Solvi

Dela
evolu
there
certa
The
and
impl

The

 dede

wher
relat
Two
respe

In o
inter
inter
In th
cubic
make
ODE
vecto
addit
show
requ
the d
can o
For d
histo
The
func

i ng ODEs, DAE

Figur

ay differential
ution involve
efore requires
ain previous ti
delay differen
DAE initial v
lemented in C

R-function th

e (y, func, times

re y, func, tim
ting to the dela
o utility funct
ectively.

order to extra
rpolate betwe
rpolation meth
he first method
c Hermite int
e use of the d

EPACK solver
or. For the so
tion, both typ

wed that Herm
uirements of th
default. Howe
occasionally p
demanding m

ory buffer has
size of this b
tion.

Es, DDEs and P

re 3. The bou

l equations (D
es past value

knowledge o
ime.
ntial equation
value solvers,

C-code.

hat solves dela

s, parms, meth

mes, parms and
ays and the …
ions allow re

act the past i
een two con
hods are imple
d, the values o
terpolation is
dense output s
rs, daspk, vode

olver radau, w
pes of solvers
mite interpolat
he dense outpu
ver, especially

produce much
models, the num

a fixed size a
buffer is one

PDEs in R___

 © European

uncing ball ex

DDEs) are sim
s of the stat
f not only the

solvers were
i.e. for all OD

ay differential

od = “lsoda”, co

d method are
is any option

etrieving past

information a
nsecutive tim
emented to re
of the state va
used to reco

strategy in the
e) the necessa

we keep a hist
also require t

tion is general
ut strategy is
y for the Adam

h more precise
mber of time-
and past value

of the param

n Society of Co

xample, an O

7. Delays

milar to ordin
te variable. T
e current state,

implemented
DEPACK solv

equations is d

ontrol = NULL,

the same as b
for the select
values of va

at random tim
me-points, em
ecover the pas
ariables and th
over the reque
e underlying s
ary informatio
tory of the pa
the time-step
lly as precise
quite large co
ms method wh
e estimates.
-steps taken m
es are stored a
meters that can

mputational M

ODE including

s

nary different
The solution
, but also of th

in R as an ex
vers, for dasp

defined as:

…)

before, control
ed integration

ariables and d

me points, th
mbracing the
st values and p
heir derivates
ested past val
solvers. For th
on comprises a
arameters of t
used at each
as the dense

ompared to He
hich can have

may be too lar
gain from the
n be set in th

Methods in Scien

g roots and ev

tial equations
of delay diff
he state and/or

xtension for m
k and radau (s

can be a list
n method.
derivatives: lag

e algorithm s
requested t

past derivates
are stored at e
lues. In the se
he linear mult
a history of th
the interpolati
time point. Pr
output strateg
ermite interpo
order up to 12

rge to be held
beginning if

he control argu

nces and Engine

vents.

s, except that
ferential equa

or its derivativ

most available
see table 2). I

with extra op

gvalue and lag

should be ab
time value.

s of state varia
each time step
econd method
tistep methods
he entire Nord
ing polynomi
ractical exper
gy. As the me
olation, the lat
2, the dense o

d in the buffer
the end is rea

gument to the

_

eering

59

their
ations

ve at a

ODE
It was

ptions

gderiv

ble to
Two

ables.
p, and
d, we
s (the

dsieck
al. In

rience
emory
tter is

output

r. The
ached.

dede

___K.Soetaert and T. Petzoldt

 © 2011 European Society of Computational Methods in Sciences and Engineering

60

A time dependent DDE with impulses in R

We now give an example of a DDE model that exhibits both discrete and continuous behavior over the
time interval of interest. The discrete jumps in the states (events) occur at particular points in time. The
example comes from [35] and describes delayed cellular neural networks with impulsive effects. As the
delays for this problem at times vanish during the integration, this is a relatively difficult problem. The
relatively complex equations can be found in [35] and are not repeated here.

library(deSolve)

Neural = function(t, y, p) {
 fun = function(x) return(0.5 * (abs(x+1) - abs(x-1)))

 tlag1 = t - (1 + cos(t))/2
 if (tlag1 > 0) Lag1 = lagvalue(tlag1) else Lag1 = yini

 tlag2 = t - (1 + sin(t))/2
 if (tlag2 > 0) Lag2 = lagvalue(tlag2) else Lag2 = yini

 dy1 = -6*y[1] + sin(2*t)*fun(y[1]) + cos(3*t)*fun(y[2]) + sin(3*t)*fun(Lag1[1]) + sin(t)*fun(Lag2[2]) + 4*sin(t)
 dy2 = -7*y[2] + cos(t)*fun(y[1])/3 + cos(2*t)*fun(y[2])/2 + cos(t)*fun(Lag1[1]) + cos(2*t)*fun(Lag2[2]) + 2*cos(t)

 return (list(c(dy1, dy2)))
}

eventfun = function(t, y, p)
 return (c(y[1] * 1.2, y[2] * 1.3))

yini = c(y1 = -0.5, y2 = 0.5)
out = dede (func = Neural, y =yini, times = seq(from = 0, to = 40, by = 0.025), parms = 0,
 events = list(func = eventfun, times = seq(from = 2, to = 40, by = 2)))
plot(out[,-1], type = "l", lwd = 2)

Note that a local function (fun) is defined within the derivative function (Neural). The past value at
times tlag1 and tlag2 are requested via function lagvalue. This is only possible when these requested
times are > 0, else the initial condition yini is used instead. During the event, the first and second value
of y are increased with 20 and 30 % respectively. Note also how, in the call to the solver dede, the
events are specified to occur at two-daily intervals (times). The last statement plots both variables
versus one another (figure 4).

Figure 4 A time-dependent DDE with impulses

-0.5 0.0 0.5

-0
.4

-0
.2

0.
0

0.
2

0.
4

y1

y2

Solvi ng ODEs, DAEs, DDEs and PDEs in R_______________________________________

 © European Society of Computational Methods in Sciences and Engineering

61

8. PDEs

An important class of differential equations arises by discretising partial differential equations,
particularly parabolic equations that can be solved by the method of lines (MOL). This replaces all the
spatial derivatives with finite differences, but leaves the time derivatives intact, after which an ordinary
differential equation solver is used to solve the system of differential equations. When the system is
stiff, much computational efficiency can be gained and memory requirements reduced by taking into
account the special, sparse, structures that the Jacobian matrices have when discretising 1-D, 2-D or 3-
D problems. In package deSolve, three special-purpose solvers implement the MOL for 1, 2 and 3-D
problems: ode.1D, ode.2D, ode.3D. If the number of species that is described and the number of grid cells
in both directions is known, then the structure of the system's sparsity can be easily derived. For
instance, when the model is one-dimensional and stiff, and the variables are arranged grid-wise, then
the Jacobian matrix will be banded, and this can be efficiently handled by radau, lsode, lsoda, vode and
daspk. As it is more natural to arrange state variables according to species, in the C-implementation of
function ode.1D, the state variables are re-ordered grid-wise before being presented to the solver.
If the model is multi-dimensional (2-D or 3-D), then the non-zero elements are located in a number of
discrete bands parallel to the diagonal, and this structure can also easily be derived from the systems
dimension. ODEs with such – arbitrarily sparse – systems are efficiently solved with function lsodes,
which implements the Yale sparse matrix algebra package from [27].
Note that all these functions solve the linear system that arises by direct (LU) methods. The
preconditioned Krylov methods, originally present in DASPK have not yet been made available in the
R interface of R-function daspk.

Similar to the MOL implementation in R-package deSolve, it is possible to solve for the steady-state
condition of 1-D, 2-D and 3-D problems, using root solvers from R-package rootSolve; they are in
functions steady.1D, steady.2D, and steady.3D. By default these functions use the same matrix algebra
functions, but they also include preconditioned solvers from FORTRAN package sparsekit [28]. The Combustion Problem in R

To illustrate how this works in R, we implement the relatively stiff combustion problem from [31].
Simplified, the reactive-transport equation describes the change in space and time of the reactant U, as
a function of transport fluxes and reactions (reac), and where the flux is by diffusion, with diffusion
coefficient K

()
U

K U reac
t


    



As in many practical applications, one is not just interested in the value of the state variables, but also
in the fluxes, it is natural to represent this parabolic equation as the gradient of fluxes across the grid
interfaces:

U
Flux reac

t


  



where
Flux K U  

In the combustion example implemented in R, state variables are represented by their values at certain
grid points and spatial derivatives are approximated through differences in these values. Thus, the state
variables are defined in the centre of grid cells, the derivatives and fluxes are defined on the cell
interfaces. The behavior of the solution at the boundaries is prescribed as a known value (=1) for the
downstream boundary, and a zero-flux boundary upstream. It is assumed that the diffusion coefficient
K equals 1:

___K.Soetaert and T. Petzoldt

 © 2011 European Society of Computational Methods in Sciences and Engineering

62

library(deSolve)
library(rootSolve)

N = 100
dx = dy = 1/N
alfa = 1; delta = 20; R = 5

Combustion = function(t, y, p) {
 U = matrix(nrow = N, ncol = N, data = y)

 reac = R /alfa/delta * (1+alfa-U) * exp(delta*(1-1/U))

 Flux_X = - rbind(0, U[2:N,] - U[1:(N-1),], 1 - U[N,]) / dx
 Flux_Y = - cbind(0, U[, 2:N] - U[,1:(N-1)], 1 - U[,N]) / dy
 dU = - (Flux_X[2:(N+1),] - Flux_X[1:N,])/dx - (Flux_Y[,2:(N+1)] - Flux_Y[, 1:N])/dy + reac

 return (list (dU))
}

std = steady.2D(y = rep(1, N*N), parms = NULL, func = Combustion, nspec = 1,
 dimens = c(N, N), lrw = 1e6, positive = TRUE)

times = c(seq (from = 0, to = 0.24, by = 0.08), seq(from = 0.3, to = 0.36, by = 0.02))
dyn = ode.2D(y = rep(1, N*N), parms = NULL, func = Combustion, nspec = 1,
 dimens = c(N, N), lrw = 1e6, times = times)

image(dyn, zlim = c(1, 2), mfrow = c(3, 3), legend = TRUE, ask = FALSE, main = paste("t =", times))
image(std, main="Steady-state", legend = TRUE, mfrow = NULL)
diagnostics(dyn)

The 2-dimensional domain (of length = 1) is subdivided into discrete computational grid cells, 100 in
the X- and 100 in the Y-direction (N); the grid size in both directions is respectively dx, dy. Thus this
model comprises N*N = 10000 coupled ODEs.
In the function implementing the derivative (Combustion), the variable values y are passed as a vector.
Before calculating on them, this vector is recast into matrix form (U). R computes as easily on entire
matrices, vectors as on single numbers. As it is much more efficient to perform vector or matrix
calculations rather than using a loop, the reaction rate, reac, is calculated on the entire matrix U at once.
The result of this calculation is a matrix, reac, which is of the same size as U.
Next the flux in X and Y direction is estimated (Flux_X, Flux_Y). For the internal cells, we estimate the
gradient in X direction by subtracting two matrices, divided by dx. The first matrix contains all rows of
U, except the first one, the other contains all rows except the last one. Here the notation 2:N creates a
vector from 2 to N in integer steps. The notation U[2:N,] selects all columns (the second dimension is
left blank), and all but the first row from matrix U. the notation U[,1:(N-1)] selects all except the last
column. Padded to the internal gradients is the upstream boundary (at x = 0), which is a zero flux
boundary, while at the downstream boundary, the value 1 is prescribed, and the gradient becomes 1-
U[N,]. Binding a row or a column to a matrix is done by R-function rbind (for fluxes in X-direction) and
cbind (Y-direction) respectively. The resulting flux matrices are of dimension (N+1, N) and (N, N+1) for
the X- and Y-direction respectively. Finally, the derivative dU is calculated as the sum of the negative
flux divergence in X- and Y-direction, and the reaction term, and returned as a list.

The model is solved in two ways. First, the steady-state condition is estimated, using function steady.2D
from R-package rootSolve. We specify the number of species (nspec) and the dimensionality of the
problem (dimens). We also need to give an estimate of the size of the work space (lrw). The Newton-
Raphson method that is called by steady.2D requires an initial guess of the solution (y), but as it happens,
for this problem this is not very critical; if we simply set the 10000 values equal to 1 (rep(1, N*N)), the
solver finds the steady-state solution in 19 iterations. Note the argument positive = TRUE. Sometimes
non-realistic solutions exist (e.g. with negative values), and this makes converging to a solution quite
difficult. This option forces the solver to only find positive values (and in this particular case, the solver
fails without this option).

Solvi

Next
integ
howe
inter
0, to

The
solut
= c(3
Fina
has
deco
dyna

From
prov
anoth
their
post-
R is
user
comm
synta

i ng ODEs, DAE

t the model is
gration till t =
ever, the reac
rvals equal to
= 0.24, by = 0.0

one but last t
tion respectiv
, 3)), while the

ally the diagno
taken 448 s

ompositions. T
amically, 1.4 s

Fig

m the user’s p
vide powerful
her requireme
r results. Whil
-processing sc
essentially a s
interfaces. T

monly used. R
ax.

Es, DDEs and P

s run dynamic
0.3 not much

ctant ignites a
0.02. Thus the

08), seq(from =

two statemen
ely (Figure 5)
e steady-state
stics of the dy

steps, requirin
The method l
seconds to est

gure 5 The co

point of view
 analysis me
ent, while pla
le R is certain
cientific result
scripting lang
There do exi
Rather, at bes

PDEs in R___

 © European

cally, using so
h happens, so
and changes a
e times vector
= 0.3, to = 0.36,

ts produce im
). We request
solution shou

ynamic simula
ng 848 funct
ast used was
imate the stea

ombustion pr

9. F

good scientifi
thods and go

atform-indepe
nly free and fle
ts, it is not per
uage, which m
ist R-package
st most R-use

n Society of Co

olver ode.2D fr
we initially re

are very fast,
r consists of tw
, by = 0.02))).

mage plots for
the figures to

uld be simply
ation is printe
tion evaluatio
of order 3. I

ady-state cond

roblem, dynam

Final Rem

fic software sh
ood graphical
endence is attr
exible, runs o
r se fast nor is
may be consid
es that provi
ers work with

mputational M

from R-packag
equest output
so from t = 0

wo combined

the dynamic
o be arranged
added to this a
d (not shown)
ons, and 11
t took about

dition for this

mic and stead

arks

hould be free,
l capabilities.
ractive to tho

on all main pla
s it always con
dered less user
de drag-and-

h an (ASCII)

Methods in Scien

ge deSolve. Fr
at intervals =

0.3 to 0.36 we
sequences (tim

simulation an
in 3 rows and
arrangement (
). From that w
Jacobian eva

5.7 seconds t
10000 state va

dy-state solut

 flexible, fast
For some, u

ose scientists
atforms, and i
nsidered to be
r-friendly com
drop facility
editor that pr

nces and Engine

rom the start o
= 0.08. After t
e request outp
mes = c(seq (fr

nd the steady
d 3 columns (m
(mfrow = NULL
we learn that l
aluations and
to solve the m
ariable model

tion

t and efficient
user-friendline
that want to

is ideally suite
e very user-fri
mpared to grap

but they are
rovides R-sen

_

eering

63

of the
= 0.3

put at
rom =

y-state
mfrow
).
lsodes
d LU
model
.

t, and
ess is
share

ed for
endly.
phical
e not

nsitive

___K.Soetaert and T. Petzoldt

 © 2011 European Society of Computational Methods in Sciences and Engineering

64

As it is an interpreted language, applications written in R code are not cheap in terms of CPU-time.
Compared to compiled languages, interpreted code often increases CPU time with a factor in the order
of 10 times and even more so if loops are used. In the PDE example (section 8) we tried to overcome
this penalty by operating on entire matrices rather than using a loop. This way, the computational cost
is just a few 10s of percentages (e.g. [6]). However, this approach cannot be applied for all problems,
and in general the more statements appear in the derivative function, the slower R will be compared to
compiled code. As we often use our models in “inverse mode”, e.g. fit the models to data or in MCMC
(Markov-Chain Monte Carlo) simulations [36], we often run a model in the order of 1e5 – 1e6 times,
and then every (fraction of a) second gained is worthwhile. With this in mind, we added to the R-
packages the option to program the derivative function (and – if desired – the Jacobian function) in a
compiled language that produces a DLL (on Windows) or a shared object file (on UNIX like operating
systems), such as FORTRAN or C. Although the setup for such models is still conveniently handled by
R, and these models are solved using the same solvers, this now proceeds by calling compiled code
directly from compiled code, and this reduces the computational cost to a few percent compared to a
model where everything would have been programmed in a compiled language [6]. It would take too
far to elaborate on that, but the interested user is referred to the technical manual [37].
Finally, the solvers implemented in R thus far mainly fall in the category of general problem solvers
rather than being dedicated to solving a particular type of problem in the most efficient way. A lot of
improvement can still be made, e.g. by including functions that also solve more specific problems such
as Hamiltonian systems, or in which PDEs can also be solved using unstructured grids (FEM).

Acknowledgments

The success of the R-project is due to the hard work of the R Core Development Team, and of the
increasing amount of enthusiasts that produce add-on functionality. We also thank our students and
post-docs for testing the packages, and the package users all over the world for giving feedback and
encouragement.
None of this would have been possible without the work of the mathematicians, computer scientists and
others who share their numerical scientific codes. More specifically, we are most indebted to Alan
Hindmarsh, Linda Petzold, Ernst Hairer, Uri Ascher, Bob Russell, Jeff Cash and Francesca Mazzia.
Jeff is also thanked for the invitation to present this work at the ICNAAM conference 2010.

References
[1] R Development Core Team: R: A Language and Environment for Statistical Computing, R

Foundation for Statistical Computing, Vienna, Austria (2009), URL http://www.R-project.org/,
ISBN 3-900051-07-0, 2010.

[2] L.F. Shampine and M.W. Reichelt, The MATLAB ODE Suite, SIAM J. Sci. Comput., 18 1-22
(1997).

[3] M.B. Monagan, K.O. Geddes., K.M. Heal, G. Labahn, S.M. Vorkoetter, J. McCarron, P.
DeMarco, Maple Advanced Programming Guide (Maple 11). Maplesoft, 2007.

[4] S. Wolfram, et. al., Mathematica Documentation, http://reference.wolfram.com/
[5] D. Bates and M. Maechler: Matrix: A Matrix package for R, R package version 0.999375-9,

2008.
[6] K. Soetaert, T. Petzoldt and R.W. Setzer: Solving Differential Equations in R: Package

deSolve, Journal of Statistical Software 33(9) 1-25 (2010). http://www.jstatsoft.org/v33/i09.
[7] K. Soetaert and P. M. J. Herman: A Practical Guide to Ecological Modelling. Using R as a

Simulation Platform, Springer-Verlag, New York, 2009.
[8] M. H. H. Stevens: A Primer of Ecology with R, Springer-Verlag, Berlin, 2009.
[9] K. Soetaert, T. Petzoldt and R.W. Setzer: Solving Differential Equations in R. The R Journal

2(2) 5-15 (2010).
[10] The Mathworks Inc., MATLAB (R) release 2010a (2010), URL http://www.mathworks.com/,

MATLAB is a registed property of The Mathworks Inc.
[11] K. Soetaert: rootSolve: Nonlinear root finding, equilibrium and steady-state analysis of

ordinary differential equations http://CRAN.R-project.org/package=rootSolve, R package version
1.6, 2009.

[12] K. Soetaert, J. R. Cash and F. Mazzia: bvpSolve: Solvers for Boundary Value Problems of
Ordinary Differential Equations. http://CRAN.R-project.org/package=bvpSolve, R package
version 1.1, 2010.

Solvi ng ODEs, DAEs, DDEs and PDEs in R_______________________________________

 © European Society of Computational Methods in Sciences and Engineering

65

[13] K. Soetaert and F. Meysman: ReacTran: Reactive Transport Modelling in 1D, 2D and 3D
http://CRAN.R-project.org/package=ReacTran, R package version 1.1, 2010.

[14] A. C. Hindmarsh: ODEPACK, A Systematized Collection of ODE Solvers, Scientific
Computing, Vol. (Editor: R. Stepleman, IMACS / North-Holland, Amsterdam), IMACS
Transactions on Scientific Computation 1 (1983), 55–64

[15] L. R. Petzold: Automatic Selection of Methods for Solving Stiff and Nonstiff Systems of
Ordinary Differential Equations. SIAM Journal on Scientific and Statistical Computing 4 136–
148 (1983).

[16] P. N. Brown, G. D. Byrne and A. C. Hindmarsh: VODE, A Variable-Coefficient ODE Solver
SIAM Journal on Scientific and Statistical Computing 10 1038–1051 (1989).

[17] K. E. Brenan, S. L. Campbell and L. R. Petzold: Numerical Solution of Initial-Value Problems
in Differential-Algebraic Equations, SIAM Classics in Applied Mathematics, 1996.

[18] E. Hairer, and G. Wanner: Solving Ordinary Differential Equations II: Stiff and Differential-
Algebraic Problems. Second Revised Edition, Springer-Verlag, Heidelberg, 2010.

[19] E. Fehlberg: Klassische Runge-Kutta-Formeln fünfter and siebenter Ordnung mit
Schrittweiten-Kontrolle, Computing (Arch. Elektron. Rechnen) 4 93-106 (1967).

[20] J. R. Dormand and P. J. Prince: A family of embedded Runge-Kutta formulae. J. Comput.
Appl. Math., 6 19-26 (1980).

[21] P. J. Prince and J. R. Dormand: High order embedded Runge-Kutta formulae. J. Comput. Appl.
Math. 7 67-75 (1981).

[22] P. Bogacki and L.F. Shampine. A 3(2) pair of Runge–Kutta formulas. Applied Mathematics
Letters 2 (4) 321–325 (1989)

[23] J. R. Cash and A. H. Karp: A variable order Runge-Kutta method for initial value problems
with rapidly varying right-hand sides. ACM Transactions on Mathematical Software 16 201-
222 (1990).

[24] J. C. Butcher: The Numerical Analysis of Ordinary Differential Equations. Runge-Kutta and
General Linear Methods. Wiley, Chichester, 1987.

[25] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery: Numerical Recipes, 3rd
edition, Cambridge University Press, 2007.

[26] U. M. Ascher, R. M. M. Mattheij and R. D. Russell: Numerical solution of boundary value
problems for ordinary differential equations, Prentice Hall, Englewood Cliffs, N.J., 1988.

[27] S.C. Eisenstat, M.C. Gursky, M.H. Schultz and A.H. Sherman: Yale Sparse Matrix Package. i.
The Symmetric Codes International Journal for Numerical Methods in Engineering 18 1145-
1151, 1982.

[28] Y. Saad, SPARSKIT: a basic tool kit for sparse matrix computations. VERSION 2 (1994).
[29] J. Dongarra, J. Bunch, C. Moler, and G. Stewart: LINPACK Users Guide, SIAM (1979).
[30] J. R. Cash, and F. Mazzia: A new mesh selection algorithm, based on conditioning, for two-

point boundary value codes. J. Comput. Appl. Math. 184 362–381 (2005).
[31] W. Hundsdorfer and J. Verwer: Numerical Solution of Time-Dependent Advection-Diffusion-

Reaction Equations. Springer Series in Computational Mathematics, Springer-Verlag, Berlin,
2003.

[32] J. Pietrzak: The use of TVD limiters for forward-in-time upstream-biased advection schemes
in ocean modeling Monthly Weather Review 126 812–830 (1998).

[33] H. Burchard, K. Bolding and M. Villarreal: GOTM, a general ocean turbulence model. Theory,
applications and test cases, tech Rep EUR 18745 EN. European Commission (1999).

[34] E. Hairer, S.P. Norsett and G. Wanner: Solving Ordinary Differential Equations I: Nonstiff
Problems. Second Revised Edition, Springer-Verlag, Heidelberg, 2009.

[35] S.P. Corwin, S. Thompson and S.M. White: Solving ODEs and DDEs with Impulses. Journal
of Numerical Analysis, Industrial and Applied Mathematics (JNAIAM) 3(1-2) 139-149, 2008.

[36] K. Soetaert and T. Petzoldt: Inverse modelling, sensitivity and Monte Carlo analysis in R
using package FME. Journal of Statistical Software 33 1–28 (2010),
http://www.jstatsoft.org/v33/i03/.

[37] K. Soetaert, T. Petzoldt and R.W. Setzer: R-package deSolve, Writing Code in Compiled
Languages (2009), http://CRAN.R-project.org/package=deSolve, package vignette.

