
Europ
in Sci
         
         
         

  

 
Diffe
mom
appli
Whe
impl
math

      
 
1 Pub
2 Cor

pean Society of C
iences and Engine
                           
                           
                           

R

Abstract:  

The open-so
statistical da
disciplines in
solution of d
In this paper
analyze initi
open-source 
the R langua
We exempli
problem for
pendulum pr
programmed
exemplify w
partial differ
The presente
scenarios, to
performance
  

Keywords: in

differential e

Mathematics

 

ferential equat
mentum, or ma
ications only r

ereas many h
lemented in 
hematical mod

                  

blished electronica

rresponding autho

Computational Me
eering (ESCMSE)
                           
                           
                           

Solving O

Ce

Received 21 Fe

ource problem 
ata analysis. A
n scientific com

differential equa
r we describe a
al value proble
numerical code

age. 
ify the use of t
r nonstiff solve
roblem, a DAE 
d in R. After 
with a DDE that
rential equation
ed R packages p
o estimate sum
e of a particular 
     © 

nitial value pro

equations, diffe

s Subject Classi

tions are the 
ass, and are c
rarely allow f
high-quality 
a language 

dels in the sam

                  

ally May 15, 201

or. E-mail: k.soeta

ethods                 
E)                          

                           
                           
                           

ODEs, DA

Ka
entre for Estu

Netherland
440
Th

Th
Institu

Technisc
0

ebruary, 2011

solving softwa
As it is a powe

mputing. One o
ations.  
a set of recently
ems of different
es, combining t

these tools by 
ers, the Arens
of index 3. A d
that we descri
t is subject to a
, a combustion 
provide additio

mmary statistics
method.  
2011 European

blems, ordinary

rential algebrai

ification: 65L0

1.

mathematical
ommonly use

finding analyti
numerical co
such as FOR
me language. 

       

1 
aert@nioo.knaw.

                           
                          
                           
                           
                           

  
 
 

AEs, DDE
 

arline Soetae
uarine and M
ds Institute o
01 NT Yerse
he Netherlan

 
homas Petzo
ut für Hydrobi
che Universitä
01062 Dresden

Germany 
 

; accepted in 

are R [1] has b
erful interpreted
of the fields w

y developed to
tial equations in
the robustness a

several examp
storff orbit ord
description of a
ibe how to im
an impulse, trig
problem mode

onal facilities to
s, or to displa

n Society of Com

y differential eq

ic equations, pr

5, 65N06, 65Y

Introduct

l formalism e
ed in many en
ical solutions,
odes exist in
RTRAN or 
For scientists

.nl  

                        Jo
               Industr
                          
                           
                          

Es and PD

ert2  
Marine Ecolo
of Ecology, 
eke, 
nds 

oldt 

iologie 
ät Dresden 
n,  

revised form 

become one of 
d language, it 

where considera

ols, so-called R
n R. Most of th
and efficiency o

les. We start b
dinary different
a bouncing ball
mplement delay
ggered at specif
led in 2-D.  

o efficiently plo
ay execution st

mputational Me

quations, partial

oblem solving e

15  

tion 

expressing con
ngineering and
, but rather req
n the scienti
C, and requ

s that are not t

ournal of Numeri
rial and Applied M
                           
              vol. 6, n
                           

DEs in R1

gy, 

11 March, 20

the most wide
is also very w

able progress h

R-packages, to 
he methods are 
of these codes w

by implementin
tial equations. 
shows how roo

y differential e
fic times. We en

ot the outcome, 
tatistics that he

ethods in Scienc

l differential eq

environment, R

nservation law
d scientific di
quire numerica
fic literature,
ire the user 
trained in prog

ical Analysis,  
Mathematics 
   (JNAIAM) 
no. 1-2, 2011, pp.
          ISSN 1790

R1  

11 

ely used system
well suited for 
has been made 

efficiently solv
based on well-

with the flexibi

ng a well-know
Next we solv

ots and events c
equations, whic
nd with a rathe

to compare dif
elp in assessin

ces and Engine

quations, delay 

R 

ws of e.g. en
isciplines. Rea
al approaches
, these are 
to formulate

ogramming in 

. 51-65 
0–8140 

ms for 
other 
is the 

ve and 
-tested 
lity of 

wn test 
ve the 
can be 
ch we 
er stiff 

fferent 
ng the 

eering 

nergy, 
al-life 
s. 
often 
e the 
these 



_______________________________________________K.Soetaert and T. Petzoldt 

 
 

                                                     © 2011 European Society of Computational Methods in Sciences and Engineering 

52

languages the need to use advanced numerical codes prevents them from using modeling as a routine 
tool in data analysis. Although several problem solving environments (PSE) exist to solve differential 
equations, e.g. MATLAB [2], Maple [3], or Mathematica [4] most are quite expensive and many 
scientists, for instance from the natural sciences, are not accustomed to using these programming 
environments. This is unfortunate, as mathematical models provide a very powerful way of 
understanding nature’s complexity, unraveling important processes or for qualitative testing of 
alternative hypotheses. Thus, a lot of scientific work could benefit from applying mathematical 
modeling tools.  
 
In recent years, the open-source software R [1] has emerged as the main platform for statistical 
computation and it is also often used to produce high-quality graphics. As its use in universities is 
growing, more and more students become acquainted with the language. Therefore, its extension with 
mathematical model solving capabilities opens opportunities to reach a wider audience that can 
potentially use scientific and engineering models. Although R is still predominantly applied for 
statistical analysis and graphical representation, it is now rapidly becoming more suitable for 
mathematical computing, e.g. by recent developments in the field of matrix algebra [5] or for solving 
complex differential equations [6]. Recently a number of books have applied R in the field of 
environmental modelling [7, 8]. 
 
In two previous papers [6, 9] we reported on how to use R for solving initial value problems of ODEs, 
DAEs and PDEs, and boundary value problems [9]. Our target audience for these papers consisted of 
R-users, which are often not acquainted with applying differential equations. Thus, we selected 
relatively simple problems, mainly from the biological sciences, while little was said about 
mathematical and implementation aspects, or about R.  
Here we elaborate more on the technical aspects of our implementations, and we deliberately choose 
more challenging mathematical problems. In addition, we motivate as to why we use R for our 
scientific programming. 
 
The paper is organized as follows: first we give a short introduction to the R-software. Then we present 
an overview over the differential equation algorithms implemented in a series of R-packages (section 3) 
and provide examples of the main classes of differential equations in sections 4 to 9. We end with some 
concluding remarks. 
 

2. The R Software 

R is both a programming language as well as a software environment providing a wide variety of 
statistical, computational and graphical functions, and interfaces to other interpreted or compiled 
languages. It originally started as an open-source “dialect” of the S-language, but since then has 
become the lingua franca of statistical computing.  
There are many reasons to use R also as a PSE. First of all, R is open source, distributed under the 
GNU General Public License (http://www.gnu.org/licenses/). As the implemented functions can be 
easily accessed and if desired changed, users can build rapidly on the work of others, rather than having 
to re-implement software over and over again. Also, freely available source code is often checked more 
thoroughly than would be done otherwise. From a philosophical point of view it is natural that 
researchers, which are primarily funded by the public sector, share their software without charge.  
There are also many obvious advantages of implementing scientific problems, fit them to data, plot the 
results, and analyze them statistically in the same environment. R is particularly strong in statistics and 
graphics, so that it is excellently suited for these post-processing tasks.  
Similar as other interpreted languages (e.g. Matlab ©, [10]), R allows compact vector and matrix 
operations, provides efficient high-level commands and can therefore be utilized with relatively limited 
programming expertise. Because of that, it is extremely well suited for rapid prototyping, testing 
alternative formulations, or performing numerical experiments.  
Last but not least, R is distributed in a unique way. Users can add algorithms and functions to the R 
base implementation by means of so-called R-packages. Developers can build upon existing packages 
hence need not copy the underlying codes. R-packages are shared with the rest of the R-community by 
posting them on the Comprehensive R Archive Network (http://CRAN.R-project.org/), where they are 
formally quality controlled (e.g. function documentation is mandatory). Once on CRAN, they can be 
downloaded and installed directly within the R software, making all the package functions readily 
available within R. The distributed repository network consisting of about 80 mirrors gives rapid access 
to any updates, while different package version numbers make these updates transparent. Moreover, an 
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archive directory at CRAN makes each package version traceable. The package system contrasts with 
other scientific computing languages, where scripts are dispersed over the internet, and that lack R's 
modularity. 
 

3. Differential Equation Solvers in R 

Rather than implementing new methods we have as much as possible started from well-established, 
freely available numerical codes. As these codes are mostly programmed in FORTRAN, while R is 
programmed in C, this requires writing a wrapper in the C language that takes care of the interface 
between R and the underlying numerical code. In short, the solver method is triggered from an R-
function, in which the input is checked, and some initial preparation is done. This R-function then calls 
the wrapper, written in C, where memory is allocated, function pointers assigned to the correct 
addresses, and where the options specific to the underlying method are set, after which the actual 
integration method, programmed in FORTRAN, is called. During the integration, the solver requires 
several times the calculation of derivatives given the current values of dependent and independent 
variables. Typically these derivative functions are programmed in R, and interfacing the solver with R 
is also done within C-code. Finally, it is also in the C-driver that some advanced methods such as 
delays, events, updating of forcing functions, or root finding are implemented (see below).  
 
The preparation done in the R-function and in the C-wrapper allows shielding the user from the 
implementation details of the underlying codes. Thus it is possible to have a relatively simple and 
uniform interface to all codes, while still the strengths and peculiarities of each solver are kept.  
The way this is supported in R is as follows. R-functions comprise two different types of arguments: 
some arguments have a default value and need not be specified, unless one is not satisfied with this 
default. Other arguments are unspecified in the function definition and must be given a value upon 
calling the function.  
 
For instance, the main R-function that solves ordinary differential equations is defined as: 
 
ode (y, func, times, parms, method = “lsoda”, …) 
 
The mandatory arguments do not have a default value and thus they must to be given a value by the 
user. For function ode, they are the initial values of the dependent variables (y), the R-function defining 
the initial value problem (func), the parameter values (parms), and the times at which output is wanted. 
The integration “method” used by default is “lsoda”; hence this argument need not be specified if one is 
content with that. 
The “…” (dots argument) allows to pass further arguments valid for the selected solver and need to be 
specified only when the user wants more control over the solution process. For instance for lsoda it is 
possible to change the default absolute and relative tolerances (default atol = rtol = 1e-6), the minimal, 
maximal and initial time step, the maximum order for Adams (12) and BDF (5) methods, the maximal 
number of steps between output intervals (5000) and so on. It is also possible to write a Jacobian 
function, or to specify the structure of the Jacobian. 
 
The main packages that deal with differential equations, and implemented by us are in table 1. 
 

Table 1. Main R-packages solving differential equations. 
R-package Functionality Reference 

deSolve Initial value problems of differential equations [6] 
rootSolve Steady state solution of differential equations [11] 
bvpSolve Boundary value problems of differential equations [12] 
ReacTran 1-D, 2-D and 3-D reactive transport models over structured grids [13] 

 
 

R-package deSolve [6], provides functions to solve initial value problems (IVP) of ordinary differential 
equations (ODE), partial differential equations (PDE), differential algebraic equations (DAE) and delay 
differential equations (DDE). It implements both Adams and backward differentiation formulae (codes 
LSODA, LSODAR, LSODE, LSODES from ODEPACK [14, 15], VODE [16] and DASPK [17]), and 
the three-stage RADAU II-A implicit Runge-Kutta method [18]. In contrast, several explicit Runge-
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Kutta methods were de novo implemented (in C-code), based on original publications [19-23] and 
using Butcher tables [24] and ideas from [25] for step-size control and interpolation. 
Finally, deSolve also includes methods that are especially designed to solve ODEs resulting by 
numerical differencing 1-D, 2-D or 3-D PDE problems by the method-of-lines. 
 
R-Package rootSolve [11] provides rootfinding algorithms, implementing amongst others the Newton-
Raphson method [26]. Several functions solve for the steady-state solution of 1-, 2- and 3-dimensional 
problems. This is achieved using the same matrix algebra functions as in ODEPACK (the Yale sparse 
matrix package, [27]), or from Sparsekit [28], or based on LINPACK's banded matrix solvers [29]. 
 
R- Package bvpSolve [12] solves boundary-value problems of ODEs, either by shooting [25, 26], by the 
collocation methods COLSYS and COLNEW [25] or based on a mono-implicit Runge-Kutta formula 
using the code BVPTWPC [30]. 
 
Package ReacTran is a comprehensive collection of R functions for modeling reactive-transport 
processes in multi-phase 1-D, 2-D or 3-D model domains with simple geometries. It offers functions 
for the generation of structured grids, and discretizes the diffusive-advective-transport equations on 
these grids, based on the flux-conservative form of the equations [31]. In addition, it includes several 
upstream-biased advection schemes containing flux limiters that are based on total variation 
diminishing concepts [32], and whose implementation is based on the GOTM code [33].  
 
The specific features of the solvers in package deSolve are in table 2. For most solvers we added root-
finding capacity, and the possibility to simulate events and delays. Only the newly implemented 
explicit Runge-Kutta methods allow to solve a differential equation within a derivative function, or to 
call a solver within a solver (‘Nesting’). As they have too many global variables (i.e. common blocks), 
none of the existing codes that we used allows the solvers to be run in parallel or in nested calls.  
 
 

Table 2 Features of the solvers in R-package deSolve; √ denotes that the feature was present in 
the original code;  √* denotes that this feature has been added by us. 

Solver y’= f(t,y) My’=f(t,y) F(y’,t,y)=0 Roots Events Delays Nesting 
lsoda/lsodar √   √ √* √*  
lsode √   √* √* √*  
lsodes √   √* √* √*  
vode √    √* √*  
daspk √* √* √  √* √*  
radau √ √  √* √* √*  
explicit R-K √    √*  √* 
 
In the next sections we document how to implement, solve and plot several types of differential 
equations, using functions from package deSolve.  
In order to assess the performance, we report the required computational time. All timing runs were 
performed on an Intel® Core ™ 2 Duo CPU T 9300 with a clock frequency of 2.5 GHz. 

 

4. A simple ODE 

We start by solving a simple initial value problem, the Arenstorff orbit problem [34], which is a 
second-order standard test problem for nonstiff solvers. It describes the closed trajectory for three 
bodies moving in the same plane, two have mass μ and (1- μ), while the third body has negligible mass. 
The implementation in R is: 
 
library(deSolve) 
Arenstorff = function(t, y, mu) { 
    D1 = ((y[1]   + mu)^2 + y[2]^2)^(3/2) 
    D2 = ((y[1]-(1-mu))^2 + y[2]^2)^(3/2) 
    dy1 = y[3] 
    dy2 = y[4] 
    dy3 = y[1] + 2*y[4] - (1-mu)*(y[1]+mu)/D1 - mu*(y[1] - (1-mu))/D2 
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radau (y, func, times, parms, nind = c(length(y), 0, 0), mass = NULL, …) 
daspk (y, func = NULL, parms, dy = NULL, res = NULL, mass = NULL, …) 
 
Function radau requires that the number of variables of index 1 to 3 is specified, as a three-valued 
vector, in argument nind; the default is to have all variables of index 1. In addition, for solving DAEs, 
radau requires that the mass matrix is provided. Problems to be solved by daspk can either be presented 
by the derivative function func and a mass matrix (or mass = NULL for ODEs), or via a residual function 
res. If used for solving DAEs, daspk also requires specification of the initial value of the derivatives (dy). 
 The pendulum problem in R 
We show how to implement the index 3 pendulum equation, and solve it using radau; the equations for 
this problem can be found in [18] or [17]. It is assumed that the squared length of the pendulum (x2+y2) 
is 1. 
 
library(deSolve) 
Pendulum = function (t, y, p) { 
   with (as.list(y), { 
      dx = u 
      dy = v 
      du = -lambda * x 
      dv = -lambda * y - 9.8 
      res = x^2 + y^2 -1 
    return (list(c(dx, dy, du, dv, res))) 
  }) 
} 
yini = c(x = 1, y = 0, u = 0, v = 1, lambda = 1) 
M = diag(nrow = 5); M[5, 5] = 0 
 
times = seq(from = 0, to = 10, by = 0.01) 
out = radau (y = yini, func = Pendulum, parms = NULL, times = times, mass = M, nind = c(2, 2, 1)) 
 
plot(out, lwd = 2) 
plot(out[, c("x", "y")], type = "l", lwd = 2) 
 
The DAE function Pendulum calculates and returns the derivatives of the first 4 variables (dx, …, dv) and 
the residual of the algebraic equation (res). After defining a set of (consistent) initial conditions (yini), 
the mass matrix (M) is created. This consists of the unity (or diagonal) matrix with 5 rows and 5 
columns, but where the element on position [5, 5] is 0 rather than 1. The first two equations are of 
index 1, followed by two of index 2, one of index 3; this is concatenated in a vector (c(2, 2, 1)) and 
passed to the solver via argument nind. The model is solved for 10 seconds, and output written at 0.01 
second intervals (times). The first plot statement depicts at once all model variables against time, using 
the variable name as figure title. The last plot statement depicts “y” versus “x”, showing the pendulums 
trajectory (figure 2). 
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Figure 2. Output of the pendulum model, an index 3 DAE 

 
6. Roots and Events 

In many instances, the computation should be terminated or altered if a certain condition is met, i.e. at 
the root of a function. Determining this particular time and the event that ensues is an important part of 
the solution. Root detection in ODEs involves, in addition to the derivative function also a “root” 
function. If at the root the simulation has to continue but with altered state variables, then a third “event” 
function is required.  
The problem can be stated as to solve a function y’=f(t, y, p) until a condition g(t*, y*, p) = 0 is met, 
after which either the simulation is stopped, or the states are altered according to yn= e(t*, y*, p).  
 
Root tracking has been implemented in the solvers in two ways. In the original RADAU code [18], the 
solver calls a subroutine each time it has performed a successful time step. In the R-implementation, 
this returns control to the C-wrapper. Here, it is checked whether the integration step includes an output 
time, and if so, RADAU’s continuous output formula is invoked to obtain the state variable values at 
these time points. It is relatively straightforward to use this function also to check whether a sign 
change in a (set of) root function(s) has occurred, and if so, to locate the root, using Brent’s method 
[25].  
In contrast, root tracking was already present in one of the ODEPACK solvers, LSODAR, and coded in 
FORTRAN. For consistency, we implemented the same root-tracking function also for two other 
ODEPACK solvers, LSODE and LSODES. 
 
During an ”event” the state variables are instantaneously altered. In biological sciences for instance, 
this may occur because animals are transferred to new culture medium, or are released in the wild; in 
pharmacokinetic modeling, events may represent the injection of a drug in the blood stream. In many 
problem solving environments, these jumps in the states have to be taken care of by the user, e.g. the 
current integration is stopped, and the user changes the variables and reinitiates the integration. In R 
this has been automated, and implemented in C-code. When during a time step, an event occurs, the C-
code changes the state variable values and the solver is informed of this fact, by setting the appropriate 
flag, such that it can adjust its time step to the new situation. This way the integration does not need to 
be halted. 
 
Events may either be associated with a root (in which case it is not known in advance when they will 
occur), or the times at which an event occurs can be defined a priori. It is possible to define in a table 
(in R-terminology a data.frame) when an event occurs, which state variables it affects and how. It is 
also possible to effectuate the change in an event function (see next example).  

0 2 4 6 8 10

-1
.0

-0
.5

0.
0

0.
5

1.
0

x

time

0 2 4 6 8 10

-1
.0

-0
.8

-0
.6

-0
.4

-0
.2

0.
0

y

time

0 2 4 6 8 10

-4
-2

0
2

4

u

time

0 2 4 6 8 10

-3
-2

-1
0

1
2

3

v

time

0 2 4 6 8 10

0
5

10
15

20
25

30

lambda

time

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.8

-0
.6

-0
.4

-0
.2

0.
0

x

y



_______________________________________________K.Soetaert and T. Petzoldt 

 
 

                                                     © 2011 European Society of Computational Methods in Sciences and Engineering 

58

The Bouncing Ball example in R 
 
The most lucid example of a root function which triggers an event is a ball, falling under the force of 
gravity. When it hits the ground, it bounces back, at a velocity, reduced by a certain amount.   
 
The differential equation reads: y’’ = -g, which is rewritten as two first-order ODEs: dy1 = y2; dy2 = -g, 
where y1 represents the height of the ball, y2 its velocity, g is the gravitational acceleration (9.8 ms-2). 
An event is triggered when the ball hits the ground, i.e. its height (y1) equals 0, thus the root function is 
g(t, y, p) = y1. When the ball hits the ground, the event function is that it bounces (i.e. the ball’s 
velocity changes sign) at a velocity that is reduced to 90%. Thus the event is specified as: y1 = 0; y2= -
y2·0.9 
 
Implemented in R, and running two scenarios, this becomes: 
 
library(deSolve) 
 
Ballode = function(t, y, parms) { 
     dy1 = y[2] 
     dy2 = -9.8 
    return (list(c(dy1, dy2))) 
} 
 
Root = function(t, y, parms) 
      return (y[1]) 
 
Event = function(t, y, parms) { 
      y[1] = 0 
      y[2] = -0.9 * y[2] 
      return(y) 
} 
yini1 = c(height = 0, v = 20) 
yini2 = c(height = 0, v = 10) 
times = seq(from = 0, to = 20, by = 0.1) 
 
out = ode(times = times, y = yini1, func = Ballode, parms = NULL, rootfun = Root, 
              events = list(func = Event, root = TRUE), method = "lsode") 
out2 = ode(times = times, y = yini2, func = Ballode, parms = NULL, rootfun = Root, 
              events = list(func = Event, root = TRUE), method = "lsode") 
plot(out, out2, which = "height", main = "bouncing ball", ylab = "height", lwd = 2) 
legend("topright", col = 1:2, lty = 1:2, legend = c("v = 20", "v = 10"), title = "initial value") 
 
Function Ballode implements the differential equations which represent the ball’s behavior between 
events. Function “Root” will return zero when the ball’s height equals 0, at which time the event 
function “Event” will change the value of y2. The integration is initiated with the ball’s position at the 
ground. It is run twice, with different initial values of the upward velocity v, 20 (yini1) and 10 m s-1 
(yini2) respectively. The integration is to proceed in the interval [0, 20] and produce output at 0.1 
second intervals (times). Although the default solver selected by ode (lsoda) is perfectly capable of 
retrieving a root, here we use method “lsode” instead (purely for educational purposes). Finally the 
height of the ball is plotted for the two scenarios (out1, out2), and a legend added, thus producing figure 
3.  
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A time dependent DDE with impulses in R 
 
We now give an example of a DDE model that exhibits both discrete and continuous behavior over the 
time interval of interest. The discrete jumps in the states (events) occur at particular points in time. The 
example comes from [35] and describes delayed cellular neural networks with impulsive effects. As the 
delays for this problem at times vanish during the integration, this is a relatively difficult problem. The 
relatively complex equations can be found in [35] and are not repeated here. 
 
library(deSolve) 
 
Neural = function(t, y, p) { 
    fun = function(x) return(0.5 * (abs(x+1) - abs(x-1))) 
 
    tlag1 = t - (1 + cos(t))/2 
    if (tlag1 > 0)   Lag1 = lagvalue(tlag1)   else   Lag1 = yini 
 
    tlag2 = t - (1 + sin(t))/2 
    if (tlag2 > 0)   Lag2 = lagvalue(tlag2)   else   Lag2 = yini 
 
    dy1 = -6*y[1] + sin(2*t)*fun(y[1]) + cos(3*t)*fun(y[2]) + sin(3*t)*fun(Lag1[1]) + sin(t)*fun(Lag2[2]) + 4*sin(t) 
    dy2 = -7*y[2] + cos(t)*fun(y[1])/3 + cos(2*t)*fun(y[2])/2 + cos(t)*fun(Lag1[1]) + cos(2*t)*fun(Lag2[2]) + 2*cos(t) 
 
    return (list(c(dy1, dy2))) 
} 
 
eventfun = function(t, y, p) 
    return (c(y[1] * 1.2, y[2] * 1.3)) 
 
yini = c(y1 = -0.5, y2 = 0.5) 
out  = dede (func = Neural, y =yini, times = seq(from = 0, to = 40, by = 0.025), parms = 0, 
                      events = list(func = eventfun, times = seq(from = 2, to = 40, by = 2)) ) 
plot(out[,-1], type = "l", lwd = 2) 
 
Note that a local function (fun) is defined within the derivative function (Neural). The past value at 
times tlag1 and tlag2 are requested via function lagvalue. This is only possible when these requested 
times are > 0, else the initial condition yini is used instead. During the event, the first and second value 
of y are increased with 20 and 30 % respectively. Note also how, in the call to the solver dede, the 
events are specified to occur at two-daily intervals (times). The last statement plots both variables 
versus one another (figure 4). 

 
Figure 4 A time-dependent DDE with impulses 
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8. PDEs 

An important class of differential equations arises by discretising partial differential equations, 
particularly parabolic equations that can be solved by the method of lines (MOL). This replaces all the 
spatial derivatives with finite differences, but leaves the time derivatives intact, after which an ordinary 
differential equation solver is used to solve the system of differential equations. When the system is 
stiff, much computational efficiency can be gained and memory requirements reduced by taking into 
account the special, sparse, structures that the Jacobian matrices have when discretising 1-D, 2-D or 3-
D problems. In package deSolve, three special-purpose solvers implement the MOL for 1, 2 and 3-D 
problems: ode.1D, ode.2D, ode.3D. If the number of species that is described and the number of grid cells 
in both directions is known, then the structure of the system's sparsity can be easily derived. For 
instance, when the model is one-dimensional and stiff, and the variables are arranged grid-wise, then 
the Jacobian matrix will be banded, and this can be efficiently handled by radau, lsode, lsoda, vode and 
daspk. As it is more natural to arrange state variables according to species, in the C-implementation of 
function ode.1D, the state variables are re-ordered grid-wise before being presented to the solver. 
If the model is multi-dimensional (2-D or 3-D), then the non-zero elements are located in a number of 
discrete bands parallel to the diagonal, and this structure can also easily be derived from the systems 
dimension. ODEs with such – arbitrarily sparse – systems are efficiently solved with function lsodes, 
which implements the Yale sparse matrix algebra package from [27].  
Note that all these functions solve the linear system that arises by direct (LU) methods. The 
preconditioned Krylov methods, originally present in DASPK have not yet been made available in the 
R interface of R-function daspk.  
 
Similar to the MOL implementation in R-package deSolve, it is possible to solve for the steady-state 
condition of 1-D, 2-D and 3-D problems, using root solvers from R-package rootSolve; they are in 
functions steady.1D, steady.2D, and steady.3D. By default these functions use the same matrix algebra 
functions, but they also include preconditioned solvers from FORTRAN package sparsekit [28].  The Combustion Problem in R 
 
To illustrate how this works in R, we implement the relatively stiff combustion problem from [31]. 
Simplified, the reactive-transport equation describes the change in space and time of the reactant U, as 
a function of transport fluxes and reactions (reac), and where the flux is by diffusion, with diffusion 
coefficient K 

( )
U

K U reac
t


    


 

 
As in many practical applications, one is not just interested in the value of the state variables, but also 
in the fluxes, it is natural to represent this parabolic equation as the gradient of fluxes across the grid 
interfaces: 

U
Flux reac

t


  


 

where 
Flux K U    

 
In the combustion example implemented in R, state variables are represented by their values at certain 
grid points and spatial derivatives are approximated through differences in these values. Thus, the state 
variables are defined in the centre of grid cells, the derivatives and fluxes are defined on the cell 
interfaces. The behavior of the solution at the boundaries is prescribed as a known value (=1) for the 
downstream boundary, and a zero-flux boundary upstream.  It is assumed that the diffusion coefficient 
K equals 1: 
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library(deSolve) 
library(rootSolve) 
 
N  = 100   
dx = dy = 1/N 
alfa  = 1; delta = 20; R = 5 
 
Combustion = function(t, y, p) { 
     U    = matrix(nrow = N, ncol = N, data = y) 
 
     reac = R /alfa/delta * (1+alfa-U) * exp(delta*(1-1/U)) 
 
     Flux_X = - rbind(0, U[2:N, ] - U[1:(N-1), ], 1 - U[N,]) / dx 
     Flux_Y = - cbind(0, U[, 2:N] - U[ ,1:(N-1)], 1 - U[,N]) / dy 
     dU   = -  (Flux_X[2:(N+1), ] - Flux_X[1:N, ])/dx     -  (Flux_Y[ ,2:(N+1)] - Flux_Y[, 1:N])/dy    +   reac 
 
     return ( list (dU) ) 
} 
 
std = steady.2D(y = rep(1, N*N), parms = NULL, func = Combustion, nspec = 1,  
                   dimens = c(N, N), lrw = 1e6, positive = TRUE) 
 
times = c(seq (from = 0, to = 0.24, by = 0.08),  seq(from = 0.3, to = 0.36, by = 0.02)) 
dyn   = ode.2D(y = rep(1, N*N), parms = NULL, func = Combustion, nspec = 1, 
                         dimens = c(N, N), lrw = 1e6, times = times) 
 
image(dyn, zlim = c(1, 2), mfrow = c(3, 3), legend = TRUE, ask = FALSE, main = paste("t =", times)) 
image(std, main="Steady-state", legend = TRUE, mfrow = NULL) 
diagnostics(dyn) 
 
 
The 2-dimensional domain (of length = 1) is subdivided into discrete computational grid cells, 100 in 
the X- and 100 in the Y-direction (N); the grid size in both directions is respectively dx, dy. Thus this 
model comprises N*N = 10000 coupled ODEs.  
In the function implementing the derivative (Combustion), the variable values y are passed as a vector. 
Before calculating on them, this vector is recast into matrix form (U). R computes as easily on entire 
matrices, vectors as on single numbers. As it is much more efficient to perform vector or matrix 
calculations rather than using a loop, the reaction rate, reac, is calculated on the entire matrix U at once. 
The result of this calculation is a matrix, reac, which is of the same size as U.  
Next the flux in X and Y direction is estimated (Flux_X, Flux_Y). For the internal cells, we estimate the 
gradient in X direction by subtracting two matrices, divided by dx. The first matrix contains all rows of 
U, except the first one, the other contains all rows except the last one. Here the notation 2:N creates a 
vector from 2 to N in integer steps. The notation U[2:N, ] selects all columns (the second dimension is 
left blank), and all but the first row from matrix U. the notation U[ ,1:(N-1)] selects all except the last 
column. Padded to the internal gradients is the upstream boundary (at x = 0), which is a zero flux 
boundary, while at the downstream boundary, the value 1 is prescribed, and the gradient becomes 1-
U[N, ]. Binding a row or a column to a matrix is done by R-function rbind (for fluxes in X-direction) and 
cbind (Y-direction) respectively. The resulting flux matrices are of dimension (N+1, N) and (N, N+1) for 
the X- and Y-direction respectively. Finally, the derivative dU is calculated as the sum of the negative 
flux divergence in X- and Y-direction, and the reaction term, and returned as a list.  
 
The model is solved in two ways. First, the steady-state condition is estimated, using function steady.2D 
from R-package rootSolve. We specify the number of species (nspec) and the dimensionality of the 
problem (dimens). We also need to give an estimate of the size of the work space (lrw). The Newton-
Raphson method that is called by steady.2D requires an initial guess of the solution (y), but as it happens, 
for this problem this is not very critical; if we simply set the 10000 values equal to 1 (rep(1, N*N)), the 
solver finds the steady-state solution in 19 iterations. Note the argument positive = TRUE. Sometimes 
non-realistic solutions exist (e.g. with negative values), and this makes converging to a solution quite 
difficult. This option forces the solver to only find positive values (and in this particular case, the solver 
fails without this option).  
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As it is an interpreted language, applications written in R code are not cheap in terms of CPU-time. 
Compared to compiled languages, interpreted code often increases CPU time with a factor in the order 
of 10 times and even more so if loops are used. In the PDE example (section 8) we tried to overcome 
this penalty by operating on entire matrices rather than using a loop. This way, the computational cost 
is just a few 10s of percentages (e.g. [6]). However, this approach cannot be applied for all problems, 
and in general the more statements appear in the derivative function, the slower R will be compared to 
compiled code. As we often use our models in “inverse mode”, e.g. fit the models to data or in MCMC 
(Markov-Chain Monte Carlo) simulations [36], we often run a model in the order of 1e5 – 1e6 times, 
and then every (fraction of a) second gained is worthwhile. With this in mind, we added to the R-
packages the option to program the derivative function (and – if desired – the Jacobian function) in a 
compiled language that produces a DLL (on Windows) or a shared object file (on UNIX like operating 
systems), such as FORTRAN or C. Although the setup for such models is still conveniently handled by 
R, and these models are solved using the same solvers, this now proceeds by calling compiled code 
directly from compiled code, and this reduces the computational cost to a few percent compared to a 
model where everything would have been programmed in a compiled language [6]. It would take too 
far to elaborate on that, but the interested user is referred to the technical manual [37].   
Finally, the solvers implemented in R thus far mainly fall in the category of general problem solvers 
rather than being dedicated to solving a particular type of problem in the most efficient way. A lot of 
improvement can still be made, e.g. by including functions that also solve more specific problems such 
as Hamiltonian systems, or in which PDEs can also be solved using unstructured grids (FEM).  
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