
European Society of Computational Methods
in Sciences, Engineering and Technology
(ESCMSET)

 

 

 

 

Journal of Numerical Analysis,
Industrial and Applied Mathematics

(JNAIAM)
vol. 7, no. 1-2, 2012, pp. 1-13

ISSN 1790–8140

The Variational Splitting Method for the

Multi-Configuration Time-Dependent Hartree-Fock

Equations for Atoms 1 2

O. Koch3

Institute for Analysis and Scientific Computing (E101),
Vienna University of Technology,

Wiedner Hauptstrasse 8–10, A-1040 Wien, Austria

Received 6 February, 2009; accepted in revised form 20 December, 2011

Abstract: We discuss the numerical approximation of the solution to the multi-
configuration time-dependent Hartree-Fock (MCTDHF) equations in quantum dynamics.
The associated equations of motion, obtained via the Dirac–Frenkel time-dependent varia-
tional principle, consist of a coupled system of low-dimensional nonlinear partial differential
equations and ordinary differential equations. We extend the analysis of the convergence
of a time integrator based on splitting of the vector field for systems of unbound fermions
to the case where a nuclear attractive potential is present. First order convergence in the
H

1 norm and second order convergence in L
2 are established. The analysis applies to

electronic states whose density vanishes at the nucleus.

c© 2012 European Society of Computational Methods in Sciences, Engineering and Technology

Keywords: MCTDHF method, electronic Schrödinger equation, time integration, splitting
methods

Mathematics Subject Classification: 65M12, 81V45

PACS: 32.80.Fb, 32.80.Hd

Introduction

This paper deals with the multi-configuration time-dependent Hartree-Fock (MCTDHF) approach
[3, 21] to the approximate solution of the time-dependent electronic Schrödinger equation

i
∂ψ

∂t
= Hψ, ψ(0) = ψ0, (1)

where the wave function ψ = ψ
(

x(1), . . . , x(f), t
)

depends on the spatial coordinates x(k) ∈ R3 of
f particles, and on time t. In atomic units, the Hamiltonian is given by

H :=

f
∑

k=1

(

−
1

2
∆(k) + U

(

x(k)
)

+
∑

l<k

V
(

x(k) − x(l)
)

)

=

f
∑

k=1

T (k) + V = T + V, (2)
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2 O. Koch

where

U(x) := −
Z

|x|
= −

Z
√

x21 + x22 + x23
, Z ∈ N, (3)

V (x− y) :=
1

|x− y|
=

1
√

(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2
, (4)

and ∆(k) is the Laplace operator w. r. t. x(k) only (we will omit the superscripts of T and ∆ where
the operand is clear). The particle-particle interactions are described by the singular Coulomb

potential V , and U is associated with the nuclear attractive force, where Z > f − 1 describes the
nuclear charge [13].

The applications that motivate this research are given by the study of ultrafast laser pulses in
photonics [3, 21], where the kinetic part of the Hamiltonian additionally depends on a time-
dependent drift term modeling the laser, such that

T (k) :=
1

2

(

−i∇(k) +A(t)
)2

+ U
(

x(k)
)

. (5)

The existence of regular solutions to the MCTDHF equations for (2) with (5) was established in
[10]. Also, the numerical approximation for T (k) := − 1

2∆
(k) was discussed in this reference. The

modifications necessary for the numerical treatment of T (k) := 1
2

(

−i∇(k) +A(t)
)2

are straightfor-
ward [10]. The aim of the present paper is to extend the convergence result for variational splitting
time integration [10, 14] to systems (5) subject to the nuclear attractive potential U (3). Addi-
tionally, the drift term present in (5) will also be treated. Our analysis applies to electrons whose
density vanishes at the nucleus, see for instance [17], where a laser pulse is used to realize localized
Bohr-like wave packets. Generally, for a point-like nucleus as considered here, this situation is
realized for any of the electronic orbitals in the atom with the exception of the s-orbitals. Due to
their vanishing angular momentum, only the probability density of the latter to be found at the
position of the nucleus does not vanish [16].

Our method of choice to make the original, linear electronic Schrödinger equation (1) tractable for
numerical computation, is the multiconfiguration time-dependent Hartree–Fock method, MCT-
DHF [3, 21], which is closely related to the MCTDH method in quantum molecular dynamics
[2, 18].

In the MCTDHF approach, the wave function is approximated by an antisymmetric linear com-
bination of products of functions (also denoted as Slater determinants) each depending on the
coordinates of only a single particle, or of a single degree of freedom (henceforth often referred to
as orbitals). The antisymmetry is a consequence of the Pauli exclusion principle [12]. The Dirac–
Frenkel time-dependent variational principle [4, 5] yields equations of motion for the single-particle
functions and the coefficients in the linear combination of the products. The MCTDHF method
thus replaces the high-dimensional linear Schrödinger equation by a system of low-dimensional non-
linear partial differential equations and ordinary differential equations and in this way makes the
problem computationally tractable. A detailed exposition of the theory and numerical realization
of this and related variational approximations is given in [15].

In Section 3, we study the approximation of the MCTDHF equations by time semi-discretization
employing an operator splitting introduced in [14]. It is shown that for a symmetric, second-order
splitting, first order convergence holds in H1 and the method is second order convergent in L2 if
the exact solution is in H3.
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Splitting for MCTDHF for Atoms 3

1 The MCTDHF method

In the MCTDHF method, the multi-particle wave function ψ is approximated by an antisymmetric
linear combination of Hartree products, that is, for x =

(

x(1), . . . , x(f)
)

,

ψ(x, t) ≈ u(x, t) =
∑

J

aJ (t)ΦJ(x, t)

=
∑

(j1,...,jf )

aj1,...,jf (t)φj1

(

x(1), t
)

· · ·φjf

(

x(f), t
)

. (6)

Here, the multi-indices J = (j1, . . . , jf ) formally vary for jk = 1, . . . , N, k = 1, . . . , f , the aJ(t)
are complex coefficients depending only on t, and the complex-valued single-particle functions

φjk
(

x(k), t
)

(also referred to as orbitals) depend on the coordinates x(k) of a single particle and
on time t. Since electrons are indistinguishable, the same N is used for each degree of freedom.
However, the Pauli principle implies antisymmetry in the coefficients aJ . Thus, in fact only

(

N
f

)

coefficients aJ have to be determined in the actual computations. To accommodate for our as-
sumption that the electronic wave function vanishes at the nucleus, we also assume that u(x, t) = 0
if xj = 0 for any j.
The Dirac–Frenkel variational principle [4, 5] is used to derive differential equations for the coef-
ficients aJ and the single-particle functions φj in (6). Thus, for u in the manifold M of ansatz
functions (6), we require

〈

δu

∣

∣

∣

∣

i
∂u

∂t
−Hu

〉

= 0, (7)

where δu varies in the tangent space TuM of M at u. 〈·|·〉 denotes the standard inner product in
the function space L2, i.e.

〈f |g〉 =

∫

R3f

f(x)g(x) dx.

This variational approximation procedure is discussed in its abstract form in [9]. In the present
paper, we are going to discuss the numerical time integration of the MCTDHF equations by
splitting methods.
Using the Dirac–Frenkel principle [4, 5] and imposing additional orthogonality constraints in L2(R3)
on the single-particle functions φj(x, t),

〈

φj
∣

∣φk
〉

= δj,k, j, k = 1, . . . , N, t ≥ 0, (8)
〈

φj

∣

∣

∣

∂φk
∂t

〉

= −i
〈

φj |T |φk
〉

, j, k = 1, . . . , N, t ≥ 0, (9)

yields a system of coupled ordinary and partial differential equations for the coefficients a = (aJ )J
and single-particle functions φ = (φj)j , rigorously derived in [2, 18] under the implicit assumption
that a sufficiently regular solution exists:

i
daJ
dt

=
∑

K

〈ΦJ |V |ΦK〉 aK =: AV (φ)a, ∀J, (10)

i
∂φj
∂t

= Tφj + (1− P )

N
∑

l=1

N
∑

m=1

ρ−1
j,m〈ψm|V |ψl〉φl (11)

=: Tφ+ BV (a, φ), j = 1, . . . , N,

where we define ΦJ :=
∏f

k=1 φjk
(

x(k)
)

, and the single-hole functions

ψj := 〈φj |u〉, j = 1, . . . , N. (12)
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4 O. Koch

The inner products 〈ψm|V |ψl〉 are over all variables except one (the arguments x(2), . . . , x(f) of
ψm, ψl), and P is the orthogonal projector onto the space spanned by φ1, . . . , φN ,

P =
N
∑

j=1

|φj〉〈φj |.

Finally,
ρj,l := 〈ψj |ψl〉 (13)

denotes the density matrix which is assumed to be nonsingular4. This assumption, together with
the orthogonality constraints (8) implies also that φj(0) = 0 for every j = 1, . . . , N . To see this,
we compute

0 = 〈u(0, x2, . . . , xf ) |ψj(x2, . . . , xf ) 〉 =

N
∑

k=1

ρk,jφk(0), j = 1, . . . , N.

Under the assumption of invertibility of ρ, all the orbitals vanish at 0.
The problem formulation based on (9) offers the advantage that in the second equation the single
particle operators T (k) ≡ T = − 1

2∆ + U appear outside the projection. For the system (10) and
(11), we will analyze the convergence of a time integrator based on splitting of the vector field [14].
The convergence result can be formulated in the following theorem:

Theorem 1.1 Consider the numerical approximation of (10)–(11) given by time semidiscretization

with the variational splitting method from Section 3.1, un 7→ un+1 = S∆tun, n = 0, 1, . . . . Then

the convergence estimates

‖un − u(tn)‖H1 ≤ const.∆t, for tn = n∆t, (14)

‖un − u(tn)‖L2 ≤ const.(∆t)2, (15)

hold if the exact solution satisfies u ∈ H3.

This result extends the convergence analysis for systems of free electrons interacting by Coulomb
force in [10]. In the unbound situation, only a regularity u ∈ H2 is required for the estimates (14)
and (15).

2 Preliminaries

For our convergence analysis of variational splitting, we are going to use an extension of Hardy’s
inequality, see also [20]. This is based on the following inequality [6]:
Let f be an integrable, nonnegative real function, f 6≡ 0,

F (t) :=

∫ t

0

f(τ) dτ,

and r > 1. Then for p > 1,

∫ ∞

0

1

tr
F p(t) dt <

(

p

r − 1

)p ∫ ∞

0

1

tr
(tf(t))p dt. (16)

Note that (16) implies the classical Hardy inequality in R3 for p = r = 2 [7]. We thereby obtain

4The choice of the initial condition such that ρ is nonsingular ensures that this holds at least for small t. [1, 19]
gives a criterion which ensures invertibility of ρ for all t in the spatially discrete case or on bounded domains.

c© 2012 European Society of Computational Methods in Sciences, Engineering and Technology (ESCMSET)



Splitting for MCTDHF for Atoms 5

Theorem 2.1 Let u ∈ H2 with u(x) = 0. Then

∫

R3

|u(y)|2

|x− y|4
dy ≤ C, C = C(‖u‖H2). (17)

Proof: For the proof, we transform (17) to polar coordinates with center x and compute

∫

R3

|u(y)|2

|y − x|4
dy =

∫ 2π

0

∫ π

0

∫ ∞

0

|u(ρ, ϕ, θ)|2

ρ2
sin(θ) dρ dθ dϕ

≤ 4

∫ 2π

0

∫ π

0

∫ ∞

0

∣

∣

∣

∣

∂u(ρ, ϕ, θ)

∂ρ

∣

∣

∣

∣

2

sin(θ) dρ dθ dϕ

≤ 4

∫

R3

|∇u(y)|2

|x− y|2
dy

≤ C(‖u‖H2),

where the last estimate uses the classical Hardy inequality [6, 7]. �

3 Analysis of Variational Splitting

3.1 Variational Splitting

It has been suggested in [14] for a Hamiltonian H = T + V as in (2) to use splitting methods
to separate the computations in (10)–(11) for the single-particle part T and the potential energy
operator V .

One step of the variational splitting method starting at u(t0) = u0 with time step ∆t is henceforth
briefly denoted by u0 7→ u1 = S∆tu0 and defined as follows:

• Compute u−1/2 ∈ M as the solution at time t0 +
1
2∆t of

〈

δu

∣

∣

∣

∣

i
∂

∂t
− T

∣

∣

∣

∣

u

〉

= 0 ∀δu ∈ TuM, (18)

with initial value u(t0) = u0.

• Compute u+1/2 ∈ M as the solution at time t0 +∆t of

〈

δu

∣

∣

∣

∣

i
∂

∂t
− V

∣

∣

∣

∣

u

〉

= 0 ∀δu ∈ TuM, (19)

with initial value u(t0) = u−1/2.

• Compute u1 ∈ M as the solution at time t0+∆t of (18) with initial value u(t0+1/2∆t) = u+1/2.

Note that with the gaugeing (9), this is equivalent to using the usual second-order, symmetric
operator splitting (commonly known as Strang splitting) on the equations (10)–(11) [8]. Thus,
since obviously Tu ∈ TuM for u ∈ M∩ H2 [11], the two steps (18) are equivalent to solving the
linear Schrödinger equations

i
∂u

∂t
= Tu (20)

c© 2012 European Society of Computational Methods in Sciences, Engineering and Technology (ESCMSET)



6 O. Koch

on the respective domains. If the initial function is chosen in M, (20) decouples into a set of single
particle, linear Schrödinger equations:

daJ
dt

= 0, ∀J, (21)

i
∂φj
∂t

= Tφj , j = 1, . . . , N. (22)

The step (19) amounts to the solution of the nonlinear system

iȧ = AV (φ)a, i
∂φ

∂t
= BV (a, φ). (23)

Motivated by the observation that the variational splitting defined above is equivalent to a splitting
of the vector field defining (10)–(11), we define

T̂ := −i(0, T )T , V̂ := −i(AV ,BV )
T , Ĥ := T̂ + V̂ . (24)

Advantages of this splitting have been described in [14], where convergence for bounded potentials
was also demonstrated. For MCTDHF for gases of unbound fermions, where T (k) = − 1

2∆
(k), the

method was analyzed in [10]. Our analysis in Section 3.2 uses the same techniques. In particular,
the estimates for the local error of the time integrator are given in terms of (iterated) commutators

of T̂ and V̂ . In the present paper, we focus on estimating the commutators with the single-particle
operators T from (5), while the reader is referred to [10] for details of the convergence proof. The
new estimates are derived in Section 3.3.
As the norms for the solution vectors we will use the following definitions: For coefficient vectors
a ∈ Cm, where m :=

(

N
f

)

, we use the Euclidean norm

‖a‖ =
(

∑

J

|aJ |
2
)1/2

. (25)

For the single particle functions φ ∈ (L2)N we use

‖φ‖S = max
j

‖φj‖S , (26)

where ‖φj‖S denotes the norm in either of the spaces S = L2, H1, H2 etc. For the pair (a, φ), we
use the norm

‖(a, φ)‖S = max{‖a‖, ‖φ‖S}. (27)

3.2 Convergence Proof for Variational Splitting

Our proof of the convergence of variational splitting as stated in Theorem 1.1 proceeds as fol-
lows, see also [10]: Denote by u the exact solution of the MCTDHF equations (10)–(11), and by
(u0, u1, . . . ) the approximate solution resulting from variational splitting.

Step 1 First, stability in the H1 norm is shown: If for some constant M1 > 0

‖u‖H1 ≤M1, ‖v‖H1 ≤M1, (28)

then we have

‖S∆t(u)− S∆t(v)‖H1 ≤ ec1∆t‖u− v‖H1 , (29)

c© 2012 European Society of Computational Methods in Sciences, Engineering and Technology (ESCMSET)



Splitting for MCTDHF for Atoms 7

with a constant c1 = c1(M1). This follows analogously as in [10] on noting that 1/|x| ≪
∆, ∇ ≪ ∆ [7], and thus the substeps (18) are propagated by a unitary semigroup of operators

also in the case of (5)5.

Step 2 We then estimate the local error in H1. Recall that the exact solution resulting from (10)–(11)
is denoted by u(t). Let u ∈ H3 and for some constant M3 > 0,

‖u‖H3 ≤M3, (30)

then

‖S∆t(u0)− u(∆t)‖H1 ≤ c2(∆t)
2, (31)

with a constant c2 = c2(M3). In this argument, based on the theory of Lie derivatives and

explained in detail in [10], a bound for the commutator ‖[T̂ , V̂ ](u)‖H1 = ‖[iT, iBV ](u)‖H1 is

used. We will show that this depends on the H3-norm of u in Section 3.3.

Step 3 Combining stability (29) and consistency (31) in H1, a standard argument then yields con-

vergence in H1,

‖un − u(tn)‖H1 ≤ C1∆t, for tn = n∆t, with C1 = C1(M3). (32)

Step 4 Boundedness of the numerical solution in H1,

‖un‖H1 ≤ const., (33)

now follows inductively from the error bound (32).

Step 5 Next, stability in L2 is investigated. It is found that

‖S∆t(u)− S∆t(v)‖L2 ≤ ec3∆t‖u− v‖L2 , (34)

with a constant c3 = c3(M1). This follows from Hardy’s inequality and the fact that T
generates a unitary semigroup on L2 [10].

Step 6 Then, the local error in L2 is estimated. To this end, the L2-norm of the double commutator

‖[T̂ , [T̂ , V̂ ]](u)‖L2 = ‖[iT, [iT, iBV ]](u)‖L2 is estimated. We will show in Section 3.3 that the

bound depends on M3 = ‖u‖H3 . From this it is concluded that

‖S∆t(u0)− u(∆t)‖L2 ≤ c4(∆t)
3, (35)

where c4 = c4(M3).

Step 7 Since we had previously concluded that ‖un‖H1 is bounded in (33), the stability estimate (34)
in conjunction with (35) now yields convergence:

‖un − u(tn)‖L2 ≤ C2(∆t)
2 with C2 = C2(M3). (36)

Step 8 Finally we conclude that the numerical approximation un is in H2 by showing boundedness

of u+1/2. This follows from a representation by the variation of constant formula, leading to

‖u+1/2(t)‖H2 ≤ ‖u−1/2‖H2 + const.

∫ t

0

(

‖u−1/2(s)‖H2 + ‖u+1/2(s)‖H2

)

ds, (37)

and the Gronwall lemma. Recall that the substeps (18) are norm-preserving, see Step 1.

5In more detail, this means that the multiplication operator φ(x) 7→ 1

|x|
φ(x) and the differential operator φ(x) 7→

∇φ(x) are relatively bounded with respect to φ(x) 7→ ∆φ(x), whence T generates a strongly continuous unitary
semigroup on H2 [7].

c© 2012 European Society of Computational Methods in Sciences, Engineering and Technology (ESCMSET)



8 O. Koch

3.3 Commutator bounds

In order to analyse the error of variational splitting [14] along the line of argument given in
Section 3.2, we need to derive estimates for commutators of the single particle operators T̂ and
the nonlinear operators in the right-hand sides of (10)–(11), see also [10].

It has been found [9, 10] that the right-hand side of the MCTDHF equations contains terms

〈

φ1(x)

∣

∣

∣

∣

1

|x− y|

∣

∣

∣

∣

φ2(x)φ̃2(y)− φ̃2(x)φ2(y)

〉

L2(x)

=: S1(y), (38)

〈

φ1(x)φ̃1(y)

∣

∣

∣

∣

1

|x− y|

∣

∣

∣

∣

φ2(x)φ̃2(y)− φ̃2(x)φ2(y)

〉

L2(x,y)

=: S2, (39)

accounting for the antisymmetry implied by the Pauli exclusion principle. φ1, φ̃1, φ2, φ̃2 are
generic representations for any four of the orbitals φ1, . . . , φN in (6). It has been demonstrated in
[10] that only terms associated with (38) appear in the commutators we need to estimate.

In the following, we list the terms appearing in the commutator [−iT,−iBV ] and double commuta-
tor [−iT, [−iT,−iBV ]] and give estimates for them. We order the terms based on the three relevant
contributions i∆, ∇, and i/|x| appearing in T (k) from (5) (for notational simplicity we set Z := 1
but remind the reader that in a stable atom, actually Z > f − 1 [13]). Our observations are based
on the computation of commutators of differential operators with the nonlinear vector field in [9].
For these considerations, we consider φ1, φ2 as compactly supported test functions in C∞. This
is sufficient for our analysis since the test functions are everywhere dense in Hm for all m.

Moreover, we use the following derivations necessary to incorporate a nuclear attractive potential
(3) into the analysis: In this case, the commutators [−iU,−iBV ] are computed as follows:

[

i

|x|
,−iBV

]

(u) =
1

|x|
BV (u) + iBV

′(u)

(

i

|x|
u

)

, (40)

with

BV
′(u)

(

i

|x|
u

)

=
d

dτ

∣

∣

∣

∣

∣

τ=0

BV

(

ei/|x| τu
)

, (41)

and
(

ei/|x| τu
)

is the flow of

∂w

∂τ
=

i

|x|
w, w(0, x) = u(x).

Since 1/|x| is a real multiplication operator, it is symmetric and hence

〈

ei/|x| τu
∣

∣

∣
V
∣

∣

∣
ei/|x| τu

〉

=
〈

u
∣

∣

∣
e−i/|x| τV ei/|x| τu

〉

.

Since ei/|x| τ and 1/|x| commute, we conclude that τ does not appear in the right-hand side of (41),
and hence

iBV
′(u)

(

i

|x|
u

)

= 0.

Consequently,
[

i
|x| ,−iBV

]

contains terms (already accounting for the antisymmetry) 1
|y|S1(y).

By inspection of the derivation of the MCTDH(F) equations of motion [2, 9], we find that the com-
mutator [−iT,−iBV ] contains the following terms, ordered by their origins from the contributions
to the single-particle operator T :

c© 2012 European Society of Computational Methods in Sciences, Engineering and Technology (ESCMSET)



Splitting for MCTDHF for Atoms 9

• [i∆,−iBV ] contains terms of the following forms, after cancellations due to antisymmetry:

C1(y) :=

〈

φ1(x)

∣

∣

∣

∣

∇y
1

|x− y|

∣

∣

∣

∣

φ2(x)

〉

L2(x)

∇yφ3(y), (42)

C2(y) :=

〈

φ1(x)

∣

∣

∣

∣

∇x
1

|x− y|

∣

∣

∣

∣

∇xφ2(x)

〉

L2(x)

φ3(y). (43)

By the Hölder and Sobolev inequalities, these are estimated as follows using the same rea-
soning as in [10]: Noting that

∇y
1

|x− y|
=

1

|x− y|2
−→e x−y, (44)

where −→e x−y denotes the unit vector in direction x− y, we find by the Hardy inequality

‖C1‖L2 ≤ const.‖φ1‖H1‖φ2‖H1‖φ3‖H1 , (45)

‖C2‖L2 ≤ const.‖φ1‖H1‖φ2‖H2‖φ3‖L2 . (46)

Finally, the convergence proof also requires to estimate the H1 norms of these commutators.
We find that

‖C1‖H1 ≤ const.‖φ1‖H1‖φ2‖H1‖φ3‖H2 , (47)

‖C2‖H1 ≤ const.‖φ1‖H1‖φ2‖H2‖φ3‖H1 . (48)

• Commutators with first partial derivatives associated with the drift term, [∇,−iBV ] contain
the terms

C3(y) :=

〈

φ1(x)

∣

∣

∣

∣

∇y
1

|x− y|

∣

∣

∣

∣

φ2(x)

〉

L2(x)

φ3(y), (49)

C4(y) :=

〈

φ1(x)

∣

∣

∣

∣

∇x
1

|x− y|

∣

∣

∣

∣

φ2(x)

〉

L2(x)

φ3(y). (50)

These are estimated as follows:

‖C3‖L2 ≤ const.‖φ1‖H1‖φ2‖H1‖φ3‖L2 , (51)

‖C4‖L2 ≤ const.‖φ1‖H1‖φ2‖H1‖φ3‖L2 , (52)

‖C3‖H1 ≤ const.‖φ1‖H1‖φ2‖H1‖φ3‖H1 , (53)

‖C4‖H1 ≤ const.‖φ1‖H1‖φ2‖H1‖φ3‖H1 . (54)

• The commutator C5 :=
[

i
|x| ,−iBV

]

has been computed above following (40). Since we

are considering smooth test functions, by Taylor expansion it follows that φ1(x)φ2(y) −
φ1(y)φ2(x) = (x − y)s(x, y), whence 1/|y|S1(y) =

1
|y|G(y), with G smooth. Recall that our

physical assumption that the electron density vanishes at the nucleus implies G(0) = 0. The
L2 norm of this term can be estimated using Hardy’s inequality. We find that

∥

∥

∥

∥

1

|y|
S1(y)

∥

∥

∥

∥

L2

=

∥

∥

∥

∥

1

|y|
G(y)

∥

∥

∥

∥

L2

≤ C = C(‖φ‖H2). (55)
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For the estimate of the H1-norm, we compute

∇y

(

1

|y|
G(y)

)

=
1

|y|2
−→e yG(y) +

1

|y|
∇yG(y).

The L2 norm of the second term is bounded in terms of ‖φ‖H3 by Hardy’s inequality, while
the same holds for the first term by (17). Altogether, we have shown that

‖C5‖H1 ≤ C(‖φ‖H3). (56)

Repeating the analogous derivations to compute the terms in the double commutator
[i∆, [i∆,−iBV ]] reveals that this contains the following terms, whose L2-norms need to be esti-
mated:

• From [i∆, C2],

C6(y) :=

〈

φ1(x)

∣

∣

∣

∣

∇x∆y
1

|x− y|

∣

∣

∣

∣

∇xφ2(x)

〉

L2(x)

φ3(y) (57)

=
(

∇yφ1(y) · ∇yφ2(y) + φ1(y)∆φ2(y)
)

φ3(y).

It has been shown in [10] that all other terms in [i∆, [i∆,−iBV ]] cancel due to antisymmetry,
and that

‖C6‖L2 ≤ const.‖φ1‖H2‖φ2‖H2‖φ3‖H2 . (58)

• Antisymmetry implies that

[i∆, C3] = [i∆, C4] = 0.

• [i∆, C5] yields the terms

C7(y) :=

〈

φ1(x)

∣

∣

∣

∣

∇y
1

|x− y|

∣

∣

∣

∣

φ2(x)

〉

L2(x)

∇y

(

1

|y|
φ3(y)

)

, (59)

C8(y) :=

〈

φ1(x)

∣

∣

∣

∣

∇x
1

|x− y|

∣

∣

∣

∣

∇xφ2(x)

〉

L2(x)

1

|y|
φ3(y). (60)

By the previous techniques, these are estimated as

‖C7‖L2 ≤ const.‖φ1‖H1‖φ2‖H1‖φ3‖H2 , (61)

‖C8‖L2 ≤ const.‖φ1‖H1‖φ2‖H2‖φ3‖H1 . (62)

• The commutator [∇, [i∆,−iBV ]] yields the terms

C9(y) := φ1(y)φ2(y)∇yφ3(y), (63)

with

‖C9‖L2 ≤ C = C(‖φ‖H2), (64)

minding the Hölder and Sobolev inequalities.

c© 2012 European Society of Computational Methods in Sciences, Engineering and Technology (ESCMSET)



Splitting for MCTDHF for Atoms 11

• Of the same origin are the terms

C10(y) :=

〈

φ1(x)

∣

∣

∣

∣

∇x∇y
1

|x− y|

∣

∣

∣

∣

∇xφ2(x)

〉

L2(x)

φ3(y), (65)

C11(y) :=

〈

φ1(x)

∣

∣

∣

∣

∆x
1

|x− y|

∣

∣

∣

∣

∇xφ2(x)

〉

L2(x)

φ3(y), (66)

permitting estimates

‖C10‖L2 ≤ const.‖φ1‖H1‖φ2‖H2‖φ3‖H1 , (67)

‖C11‖L2 ≤ const.‖φ1‖H1‖φ2‖H2‖φ3‖H1 . (68)

• The double commutator [∇, [∇,−iBV ]] is found to contain only contributions which, due to
antisymmetry, vanish.

• [∇, C5] yields the terms

C12(y) :=

〈

φ1(x)

∣

∣

∣

∣

∇x
1

|x− y|

∣

∣

∣

∣

φ2(x)

〉

L2(x)

1

|y|
φ3(y), (69)

and likewise with ∇y replacing ∇x. Similarly as for C1 and C2, these are estimated using the
Hardy and Hölder inequalities, see also (44). The estimate

‖C12‖L2 ≤ const.‖φ1‖H1‖φ2‖H1‖φ3‖H1 (70)

readily follows.

• The commutators
[

i
|x| , C1

]

, . . . ,
[

i
|x| , C4

]

imply, by the considerations following (40), multi-

plication of the respective terms by i/|x|, whence by Hardy’s inequality the same bounds as
in (47), (48), (53) and (54) hold.

• Finally, the commutator C13(y) :=
[

i
|x| , C5

]

is computed by multiplying S1(y) in (38) by

1/|y|2. Exploiting antisymmetry, we find

C13(y) =
1

|y|2
G(y),

with G containing first derivatives of φ, cf. (55). Thus, using (17), we conclude

‖C13‖L2 ≤ C, C = C(‖φ‖H3). (71)

With the commutator bounds given above, it is clear that the proof outlined in Section 3.2 is
completed analogously to [10] and Theorem 1.1 has been demonstrated.

4 Conclusions and Outlook

In this paper, we have analyzed the variational splitting integrator of [14] for the discretization
in time of the MCTDHF equations of motion. The convergence in the present setting of the
electronic Schrödinger equation with Coulomb interaction and singular nuclear attractive potential
was investigated in Section 3.2.
We were able to establish the convergence of this time integrator. A first order error bound was
derived in the H1-norm, while the classical convergence order two was shown in L2. Thus, it
is possible to efficiently treat the single particle part and the particle-particle interactions in the
Hamiltonian separately, using different suitable time integrators and different step sizes, see [8, 14].
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which made the present work possible, and invaluable discussions with R. Hammerling and S.
Rotter from Vienna Univ. of Technology on the physical background.

References

[1] C. Bardos, I. Catto, N. Mauser, and S. Trabelsi. Global-in-time existence of solutions
to the multiconfiguration time-dependent Hartree-Fock equations: A sufficient condition.
Appl. Math. Lett., 22:147–152, 2009.
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