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cristina@dei.uminho.pt

vmatos@dei.uminho.pt

Received 9 December, 2011; accepted in revised form 19 June, 2012

Abstract: Legged robots are often used in a large variety of tasks, in different environments. The

large number of degrees-of-freedom, to be controlled during these tasks, turns the online generation

of trajectories in these robots very complex. In this paper, we consider a modular approach to online

generation of trajectories, based on biological concepts, namely Central Pattern Generators (CPGs).

We introduce a new CPG model for hexapod robots’ rhythms, that generalizes the work of Golu-

bitsky, Stewart, Buono and Collins (1998,1999). Each neuron/oscillator in the CPG consists of two

modules/primitives: rhythmic and discrete, that are modeled by nonlinear dynamical systems. Su-

perposition of discrete and rhythmic primitives permits the modeling of complex motor behaviors,

namely locomotion in irregular terrain and obstacle avoidance. We study the effect on the amplitude

and frequency of the robots’ gaits of superimposing the two motor primitives. The discrete primi-

tive is inserted as an offset of the solution of the rhythmic primitive. We also consider three types

of couplings between CPG units: synaptic, diffusive and mixed. Simulation results reveal interesting

facts, in certain cases amplitude and frequency of periodic solutions, identified with hexapods’ tripod,

caterpillar and metachronal gaits, remain constant. Therefore, it is possible to use these solutions

to generate trajectories for the joint values of real six-legged robots, since varying the joint offset will

not affect the required amplitude and frequency of the resultant trajectory nor the gait.
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1 Introduction

In the last few years, there has been a large development in the modeling of online generation of trajectories

in legged robots. Models producing rhythmic robots’ patterns, inspired in biology, are now widely spread.

Locomotion in vertebrates is commonly structured in three layers [19, 11]. The top layer consists of the

brainstem command systems, the structures that decide which motor pattern is to be activated at each

moment of time. The middle layer is composed of the steering and posture control systems. The bottom

layer includes the Central Pattern Generators (CPGs). CPGs are networks of neurons, presumably located

at the spinal level of vertebrates, that are responsible for the rhythmic patterns observed during animals’

locomotion. Mathematically, CPGs are commonly modeled by coupled nonlinear dynamical systems [8, 9,

5].

Dynamical systems have very nice properties, such as smooth modulation, low computational cost,

phase-locking between oscillators, that are extremely useful to online modulation of trajectories [17, 4].

Schöner et al [27] propose a set of organizational principles that allow an autonomous vehicle to perform

stable planning. In 1994, Lewis et al [12], propose a complex motor pattern (CMP) generator for the control

of the leg movements of a hexapod robot. The CMP consists of a network of neurons and the interconnection

weights between the neurons are optimized by a Genetic Algorithm (GA). In the GA, the designer specifies

”islands of fitness” on the way to the final goal. The system itself determined how to evolve from one

island to the next through the GA. Yang et al [30] studied a biologically inspired neural network model to

real-time collision-free motion planning of mobile robots or manipulators in a non stationary environment.

In [25], authors design, model and control an hexapod robot, RHex. RHex has six actuated degrees of

freedom, located at the hip. Simulations show that RHex is capable of stable walking, running and turning.

The control of the robot is achieved by the use of finite state approaches. In 2001, Schöner and Santos [28]

propose an attractor based two-layer dynamics for autonomous vehicles when relatively low-level, noisy

sensorial information is used to steer action. This architecture autonomously generates timed movements

and sequences of movements stably adapted to online changes of sensory information. In 2002, Arena

et al [1] propose a CPG for hexapod robots that includes sensorial feedback. The CPG is modeled by

cellular neural networks (CNNs) and local bifurcation of the CNN cells allow control of the robot. That

is to say that changing the value of the bias of CNN cells produces suitable control of the robot. CNN for

hexapod locomotor control are also studied in [14], where a new design of a CNN is presented. Authors

introduce new state equations, reducing the number of CNN cells, from 12 to 6, and lowering the complexity

of the CNN circuit. Santos [24] develops previous work ([28]) and integrates a timing architecture with

another dynamical architecture, which does not explicitly parameterize timing requirements. The timing

model consists of a two layer architecture, in which a competitive neural dynamics controls the qualitative

dynamics of a second, timing layer. At that second layer, periodic attractors generate timed movement. By

switching between the limit cycle and the fixed points, discrete movements and sequences of movements are

obtained. These switches are controlled by the parameters of the neural dynamics which express sensory

information and logical conditions. Dégallier et al [7] use a dynamical systems’ approach to do online

generation of trajectories in a robot performing a drumming task. Makarovet al [16] propose a Toda-

Rayleigh (TR) ring, consisting of six TR units, as a model for a CPG for controlling hexapodal robots.

Common hexapodal gaits, such as tripod and caterpillar, are reproduced by this CPG model when coupled

to the limb actuators. Authors also implement electronically the CPG and show how to incorporate the

actuator (motor) dynamics in it. The approach used in this paper allows adaptability of locomotion in

nonhomogeneous environments, without the need of higher level intervention. Matos et al [17] propose

a bio-inspired robotic controller able to generate locomotion and to easily switch between different types

of gaits. Oliveira et al [18] develop a quadruped locomotion controller able to generate locomotion and

reaching visually acquired markers. Campos et al [4], present a two-layer architecture to model hexapod

robots’ locomotion. The bottom layer consists of the CPG for generating hexapods’ gaits and the second

layer sets up the parameter values for each gait. They study smooth gait transition in the model, using a

modulatory drive signal regulating CPG’s activity. Authors also propose a lateral posture control, based on

c© 2012 European Society of Computational Methods in Sciences, Engineering and Technology (ESCMSET)



Hexapod robots: new CPG model for generation of trajectories 17

dynamical systems, that corrects the robot posture and keeps its balance, when subject to changes in the

lateral tilt.

Pinto et al [22] introduce a new CPG model for the generation of hexapods robots’ gaits that consists of

twelve oscillators, two for each leg. The trajectories are composed of two distinct primitives, rhythmic and

discrete. Authors study the effect of superimposing these primitives on the robot’s gaits, when the discrete

primitive is inserted as an offset of the rhythmic one and two types of coupling are considered: diffusive and

synaptic. Numerical results show that amplitude and frequency values of the periodic solutions produced

by the CPG model and identified with tripod and metachronal are almost constant for the two couplings.

In this paper, we develop the work done by Pinto et al [22]. We consider the CPG model hexapod-

robot, in Fig 1, for modular generation of an hexapod robot movements, using a biological approach [2].

CPG hexapod-robot is a network of twelve coupled CPG-units, each of which consists of two motor

primitives: rhythmic and discrete. The periodic solutions produced by the CPG model hexapod-robot

are identified with common hexapodal gaits, such as tripod, metachronal caterpillar pronk, and lurch.

We study the variation in the amplitude and the frequency values of these periodic solutions when the two

primitives are superimposed. The discrete primitive is inserted as an offset of the purely rhythmic periodic

solution. We consider three types of coupling between the CPG units, diffusive, synaptic, and mixed. The

main goal is to show that these discrete corrections may be performed since that they do not affect the

gait, meaning that the amplitude and frequency of the resultant trajectories is kept constant. Therefore,

it is possible to use the solutions to generate trajectories for the joint values of real robots, since varying

the joint offset will not affect the required amplitude and frequency of the resultant trajectory, nor the

gait. Amplitude and frequency may be identified, respectively, with the range of motion and the velocity

of the robot’s movements, when considering implementations of the proposed controllers for generating

trajectories for the joints of rea l robots.

2 CPG model for hexapods

In this section we introduce the CPG model for online generation of trajectories of hexapod robots, hexapod-

robot. It is based in the work of Golubitsky et al [9, 10]. We give the general class of systems of ordinary

differential equations (ODEs) that model CPG hexapod-robot and resume the symmetry techniques that

allow classification of periodic solutions produced by this CPG model and identified with common hexapod

locomotor rhythms.

2.1 Architecture and symmetry

Figure 1 shows the CPG model hexapod-robot(Fig 1) for generating locomotion for hexapods robots.

It consists of twelve coupled oscillators. The oscillators (or cells) are denoted by circles and the arrows

represent the couplings between cells. All cells are identical, since they are represented by the same symbol.

There are two distinct arrows that represent two distinct coupling strengths.

Each cell is a CPG unit and is divided into two motor primitives, discrete and rhythmic, both modeled

by nonlinear dynamical systems.

This is the minimal CPG capable of producing all of the hexapodal gaits (Table 2). The choice of a

12-cells CPG model opposed to a 6-cells model may be seen as a increase of the complexity of the model,

associated with more integration time and lower speed. Nevertheless, the repeated advances in computer

speed and the availability of fast, optimized software ‘engines’, to implement simulations of real world

phenomena, turn hexapod-robot into a viable solution for trajectory generation in robotics.

c© 2012 European Society of Computational Methods in Sciences, Engineering and Technology (ESCMSET)



18 Carla M.A. Pinto et. al.

Figure 1: CPG locomotor model for hexapods, hexapod-robot. LF (left fore leg), LM (left middle leg),

LH (left hind leg), RF (right fore leg), RM (right middle leg), RH (right hind leg).

2.2 General class of ODEs

The general class of systems of ODEs modeling CPG model hexapod-robot is:
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ẋRH2
= F(xRH2

,xLH2
,xRF1

)
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(1)

where xi ∈ Rk is the cell i variables, k is the dimension of cells’ internal dynamics, and F : (Rk)3 → Rk, is

an arbitrary mapping. We assume that and all cells/neurons are identical, i.e, all cells have the same internal

dynamics.

CPG hexapod-robot has

Γhexapod−robot = Z6(ω)×Z2(κ)

symmetry group. The CPG model hexapod-robot has the bilateral symmetry of animals (Z2(κ)) and a

translational symmetry (Z6(ω)), from back to front, i.e, RF is coupled to cell RH, and the same applies for

cells on the left side. Z2(κ) is the cyclic group of order 2, and Z6(ω) is the cyclic group of order 6.

c© 2012 European Society of Computational Methods in Sciences, Engineering and Technology (ESCMSET)
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2.2.1 Is symmetry reasonable?

Symmetry has been used to build CPG models for locomotion of animals and robots [10, 8, 23, 13, 22, 20,

21]. This need to include symmetry is related with the phase relations between legs’ movements in animals.

Some examples follow. In the biped walk, where left and right legs are half-period out of phase, or in the

hexapod metachronal gait, where left and right legs are half-period out of phase. The major phase shifts

observed in locomotor rhythms are simple fractions of the period, suggesting that the model CPG might

have some symmetry, since these particular phase shifts are unusual in asymmetric systems. Additionally,

bilateral symmetry is prevalent in the animal kingdom, thus it seems reasonable that a CPG model for

animal locomotor patterns should have at least bilateral symmetry.

Symmetry seems, thus, a reasonable modeling assumption, even though real life animals are not per-

fectly symmetric.

2.3 Periodic solutions and hexapodal gaits

Theorem H/K [8] allows the identification of symmetry types of periodic solutions, produced by a given

coupled cell network. These periodic solutions are then identified with animals locomotor rhythms. Let x(t)
be a periodic solution of an ODE ẋ = f (x), with period normalized to 1, and with symmetry group Γ. Let H

and K be subgroups of Γ. Spatial symmetries K fix the solution pointwise, i.e., let γ ∈ Γ, then γx(t) = x(t).
Spatio-temporal symmetries H fix the solution setwise, i.e., γx(t) = x(t −θ )↔ x(t +θ ) = x(t), where θ is

the phase shift associated to γ . If θ = 0, then γ is a spatial symmetry.

In order for (H, K) to correspond to symmetries of a periodic solution x(t) to (1), for some function F ,

the quotient H/K must be cyclic. In Table 1, we show those pairs of symmetry types (H,K) such as H/K

is cyclic and their identification with common hexapod rhythms, such as pronk, lurch, metachronal, and

tripod. Table 2, exhibits the corresponding periodic solutions.

Some gaits in Tables 1-2, such as the rolling tripod or the inchworm, have not yet been observed in

real hexapods, nevertheless, it is worth verifying whether they are applicable to six-legged robots. Robots’

dynamics may be inspired in biology but do not have to mimic all of real animals’ behavior.

H K Gait

Γhexapod−robot Γhexapod−robot pronk

Γhexapod−robot Z6(ωκ) tripod

Γhexapod−robot Z6(ω) pace

Γhexapod−robot D3(k,ω
3) caterpillar

Γhexapod−robot Z3(ω
2κ) lurch

Γhexapod−robot Z2(ω
3κ) metach.

Γhexapod−robot Z2(κ) inchworm

Γhexapod−robot Z2(ω
3) rolling tripod

Table 1: Symmetry pairs of periodic solutions, produced by the coupled cells system (1), and corresponding gaits.

The tripod is a gait used for fast displacements. In the tripod, the left hind and fore legs, and the

contralateral middle leg move together. This is also valid for the remaining three legs. Between these two

groups of legs, there is a phase shift of 1/2 period. The tripod is identified with a periodic solution of

CPG hexapod-robot with symmetry pair (H,K) = (Γhexapod−robot,Z6(ωκ)). Consider x(t)=(x1(t),...,x12(t)) a

periodic solution produced by CPG model hexapod-robot. In order to understand transformation ωκ , we

first apply κ to x(t), obtaining:

x̂(t) = (x2(t),x1(t),x4(t),x3(t),x6(t),x5(t),x8(t),x7(t),x10(t),x9(t),x12(t),x11(t))

c© 2012 European Society of Computational Methods in Sciences, Engineering and Technology (ESCMSET)
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Left Middle Right Gait

(xLH ,xLH ) (xLH ,xLH ) (xLH ,xLH ) pronk

(xLH ,xS
LH ) (xS

LH ,xLH ) (xLH ,xS
LH ) tripod

(xLH ,xS
LH ) (xLH ,xS

LH ) (xLH ,xS
LH ) pace

(xLH ,xLH ) (x
2S/3
LH ,x

2S/3
LH ) (x

4S/3
LH ,x

4S/3
LH ) caterpillar

(xLH ,xLH ) (xS
LH ,xS

LH ) (xLH ,xLH ) lurch

(xLH ,xS
LH ) (x

S/3
LH ,x

4S/3
LH ) (x

2S/3
LH ,x

5S/3
LH ) metac.

(xLH ,xLH ) (x
S/3
LH ,x

S/3
LH ) (x

2S/3
LH ,x

2S/3
LH ) inch.

(xLH ,xS
LH ) (x

2S/3
LH ,x

5S/3
LH ) (x

4S/3
LH ,x

S/3
LH ) rol. trip.

Table 2: Periodic solutions of system (1), identified with common hexapods gaits, where period of solutions is nor-

malized to 1. We only show the bottom six cells, the others can be easily computed. S is half period out of phase.

After that, we apply ω to x̂(t), resulting in solution

x̃(t) = (x4(t),x3(t),x6(t),x5(t),x8(t),x7(t),x10(t),x9(t),x12(t),x11(t),x2(t),x1(t))

Thus, spatial symmetry ωκ forces the solution to have the form

x̄(t) = (x1(t),x2(t),x2(t),x1(t),x1(t),x2(t),x2(t),x1(t),x1(t),x2(t),x2(t),x1(t))

Applying ωκ to the tripod does not change that gait since the groups of cells (1,4,5,8,9,12) and

(2,3,6,7,10,11) receive the same set of signals. Spatio-temporal symmetries Γhexapod−robot force signals

sent to the two groups of cells above to be equal and to be half period out of phase. Thus, the final solution

identified with tripod has the form:

x̄(t) = (x1(t),x1(t + 1/2),x1(t + 1/2),x1(t),x1(t),x1(t + 1/2),x1(t + 1/2),x1(t),x1(t),x1(t + 1/2),x1(t + 1/2),x1(t))

The caterpillar is used by arthropods for a medium speed locomotion. The ipsilateral legs move with a

phase shift of 1/3 of the period and left and corresponding right legs move together. This gait is identified

with a periodic solution of CPG (1) with symmetry group
(

Γhexapod−robot,D3(ω
3,κ)

)

.

The metachronal gait is used by six-legged animals for slow locomotor rhythms. This gait can be

described as a ‘wave’ propagating forward from the rear of the animal, first on the left side, and then on the

right side. Legs on the same side move with a phase shift of 1/3 of the period, and right and left legs are

1/2 period out of phase. This gait is identified with a periodic solution of CPG (1) with symmetry group
(

Γhexapod−robot,Z2(ω
3)
)

.

2.4 Stability of hexapodal gaits

Suppose that x(t) is a hyperbolic periodic solution to CPG hexapod-robot, corresponding to a gait with

spatiotemporal symmetries H and spatial symmetries K, where K ⊂ H ⊂ Γhexapod−robot. Theorem 3.6 (page

67) of Golubitsky and Stewart [8] guarantees the existence of a hyperbolic stable periodic solutions to

system (1), with spatial symmetry K and spatiotemporal symmetry H. Thus, in the case where the discrete

part is inserted in all limbs and with equal value, periodic solutions produced by the CPG model hexapod-

robot are stable and are identified with the hexapodal gaits in Table 1.

The identification of periodic solutions in Table 1 may also be done using bifurcation theory. To compute

stability of those periodic solutions, it is necessary to compute the eigenvalues of the linearization L of

system (1) at an equilibrium X = (x,x,x,x,x,x,x,x,x,x,x,x). If the group action is complicated, bare hands

computation or computer algebra systems give little insight into the results.

c© 2012 European Society of Computational Methods in Sciences, Engineering and Technology (ESCMSET)
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The Γhexapod−robot symmetry group of system (1) implies that L commutes with Γhexapod−robot, and this

translates in nice properties on matrix L.

We can decompose P = (Rk)12 into a direct sum of Γhexapod−robot irreducible subspaces. In general,

this decomposition is not unique, nevertheless, if we use components that combine together all of the

Γhexapod−robot irreducible subspaces that lie in a fixed isomorphism class, then we obtain a decomposition

that is unique. This decomposition is also invariant under L.

Let V jk be the sum of all irreducible subspaces that are isomorphic to a representation λ ∈Γhexapod−robot.

That is, V jk is the isotypic component of (Rk)12, corresponding to λ . Subspaces V jk are defined as follows.

Let σ = eiπ/3, then V jk is spanned, over C, by:

v jk =
(

1,(−1)k;σ j,(−1)kσ j;σ2 j,(−1)kσ2 j; . . . ;σ5 j ,(−1)kσ5 j
)

Since Γhexapod−robot is abelian, there are eight distinct one-dimensional representations of Γhexapod−robot.

These representations are distinguished by their kernels and are denoted by such. The decomposition of P

into irreducibles is into the representations Pjk, where

Pjk =

{

Re(V jk) if j = 0,3
Re(V jk ⊕V5− j,k) if j = 1, 2

See Table 3 for a correspondence between gaits in Table 1 and irreducibles Pjk.

Pjk Hexapodal gaits

P00 pronk

P31 tripod

P01 pace

P20 caterpillar

P30 lurch

P11 metachronal

P10 inchworm

P21 rolling tripod

Table 3: Periodic solutions of CPG hexapod-robot and corresponding isotypic components.

The isotypic decomposition can be used to block-diagonalize L (see Theorem 2.12 in [8]). The later

makes easier the task of computing the eigenvalues of L. Let A, B, C be k× k matrices, where A is the

part of the Jacobian L corresponding to the oscillators’ internal dynamics, B corresponds to the bilateral

coupling, and C is the ipsilateral coupling. Matrix L is given by:

L =









































A B 0 0 0 0 0 0 0 0 C 0

B A 0 0 0 0 0 0 0 0 0 C

C 0 A B 0 0 0 0 0 0 0 0

0 C B A 0 0 0 0 0 0 0 0

0 0 C 0 A B 0 0 0 0 0 0

0 0 0 C B A 0 0 0 0 0 0

0 0 0 0 C 0 A B 0 0 0 0

0 0 0 0 0 C B A 0 0 0 0

0 0 0 0 0 0 C 0 A B 0 0

0 0 0 0 0 0 0 C B A 0 0

0 0 0 0 0 0 0 0 C 0 A B

0 0 0 0 0 0 0 0 0 C B A








































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It follows from Table 3 that the eigenvalues of L are the eigenvalues of block matrices LΓhexapod−robot
, LZ6(ωκ),

LZ6(ω), LD3(κ ,ω3), LZ3(ω2κ), LZ2(ωkκ), LZ2(κ), and LZ2(ω3). See (2) for examples.

LΓhexapod−robot
= A+B+C LZ6(ωκ) = A−B−C LZ6(ω) = A+B−C (2)

As Γhexapod−robot is an abelian group, generically, Hopf bifurcation occurs with simple pairs of purely

imaginary eigenvalues. Thus, we may compute Hopf bifurcation points for each matrix Lλ and stability of

the corresponding periodic orbits. Table 4 shows the correspondence between periodic orbits obtained from

Lλ and hexapodal gaits in Table 1.

Lλ Hexapodal gaits

LΓhexapod−robot
pronk

LZ6(ωκ) tripod

LZ6(ω) pace

LD3(κ ,ω3) caterpillar

LZ3(ω2κ) lurch

LZ2(ω3κ) metachronal

LZ2(κ) inchworm

LZ2(ω3) rolling tripod

Table 4: Periodic solutions of CPG hexapod-robot obtained from Hopf bifurcation of Lλ .

In all other cases, where the discrete part is inserted in all limbs with unequal values, or is only inserted

in some of the limbs, the periodic solution obtained is not any of the hexapodal gaits in Table 4. This

is explained by the fact that the symmetry group of this solution x̃(t) is no longer Γhexapod−robot, but is a

smaller group. This, the solution x̃(t) might be ‘close’ to x(t) but is not the same. Mathematically, this can

be explained as follows. Suppose that we consider a small forced symmetry-breaking of the equations (1),

so that there are distinct functions in (1) modeling the oscillators’ internal dynamics. Hyperbolicity implies

that a solution x(t) of CPG-hexapod-robot perturbs to a periodic solution of a network close to hexapod-

robot, but with oscillators of different types. For instance, you can consider left cells distinct from right

cells, so you have function F1 modeling the dynamics of cells on the left, and function F2 modeling the

dynamics of cells on the right, with F1 6= F2. Let’s call this new network hexapod-robot-2. The symmetry

group of hexapod-robot-2 is Γhexapod−robot−2 = Z6(ω)⊂ Γhexapod−robot.

The perturbed solution x̃(t) has symmetry groups H ′ =H∩Γhexapod−robot−2 and K′ =K∩Γhexapod−robot−2.

These points are verified as follows. Uniqueness of the perturbed periodic solution implies that all sym-

metries in K ∩Γhexapod−robot−2 fix the perturbed trajectory pointwise since the perturbed equations have

Γhexapod−robot−2-equivariance, that is, they have Γhexapod−robot−2 symmetry group. So K∩Γhexapod−robot−2⊂
K′. Conversely, any symmetry in K′ ⊂ Γhexapod−robot−2 must be in K again by the uniqueness of hyperbolic

periodic solutions in a small neighborhood. An analogous argument is valid for H ′.
This raises some questions concerning applicability of these ‘close’ solutions to motor actuators in

robots. How small should be ‖x(t)− x̃(t)‖ so that these differences are forgotten by the physical mech-

anism? Considering consumer and educational robots, particularly considering prototype and research

oriented devices, presently these apply “hobby ”servos which include digital microcontrollers. Specifically,

Dynamixel servos from Robotis, appear as an attractive and appealing type of servos, considering feasibility

for precision control and dynamic operation. The capabilities of these servos, were extensively analyzed in

[29]. Their tests have shown that the average uncalibrated servo has a position bias within ±0.21o at the

ends of its range of motion, and that, when unloaded, the overall standard deviation of position feedback

from target position is 0.36o. These tests have demonstrated that the servo accurately reaches its target

position when unloaded.

c© 2012 European Society of Computational Methods in Sciences, Engineering and Technology (ESCMSET)
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Therefore, considering solutions that are close to the ideal solution, with an error smaller than 10−3 or

10−2, these considerations are not relevant for physical, real devices that employ these servos or alike.

3 Numerical simulations

We simulate the CPG model hexapod-robot. In each CPG-unit, the discrete part y(t) is inserted as an offset

of the rhythmic part x(t). See Fig. 2 for a schematic diagram of the superposition of the two primitives.

f(x,z)
g(x,z)

y

VITE

x

CPG unit

Figure 2: CPG unit of a CPG locomotor model for hexapod robots (hexapod-robot). Discrete primitive

inserted as an offset.

We also consider three distinct couplings between the oscillators: diffusive, synaptic, and mixed.

We start from a stable periodic solution, purely rhythmic. Then, we vary parameter T in steps of

0.1 in the interval [0,25]. For each value of T , we perturb the rhythmic solution and simulate it until a

stable periodic solution is obtained. Then we compute its amplitude and frequency values. We restart the

simulations for a new value of T . Numerical results are illustrated.

The system of ordinary differential equations that models the discrete primitive is the VITE model given

by [3]:

v̇ = δ (T − p− v)
ṗ = G max(0,v)

(3)

This set of differential equations generates a trajectory converging to the target position T , at a speed

determined by the difference vector T − p, where p models the muscle length, and G is the go command. δ
is a constant controlling the rate of convergence of the auxiliary variable v. This discrete primitive controls

a synergy of muscles so that the limb moves to a desired end state, given a volitional target position.

The equations for each rhythmic motor primitive are known as the modified Hopf oscillator [15, 17, 4]

and are given by:

ẋ = α(µ − r2)x−ωz = f (x,z)
ż = α(µ − r2)z+ωx = g(x,z)

(4)

where r2 = x2 + z2,
√

µ is the amplitude of the oscillation. For µ < 0 the oscillator is at a stationary state,

and for µ > 0 the oscillator is at a limit cycle. At µ = 0 it occurs a Hopf bifurcation. Parameter ω is

the intrinsic frequency of the oscillator, α controls the speed of convergence to the limit cycle. ωswing and

ωstance are the frequencies of the swing and stance phases, ω(z) = ωstance

exp (−az)+1
+

ωswing

exp (az)+1
is the intrinsic

frequency of the oscillator. With this ODE system, we can explicitly control the ascending and descending

phases of the oscillations as well as their amplitudes, by just varying parameters ωstance, ωswing and µ .

The coupled systems of ODEs that model CPG hexapod-robot for synaptic, diffusive and mixed cou-

plings are given by:

ẋi = f1(xi,zi,yi)+ k1h1(xi+εi
,xi)+ k2h2(xi−2,xi)

żi = g1(xi,zi,yi)+ k3h1(zi+εi
,zi)+ k4h2(zi−2,zi)

(5)

where f1(xi,zi,yi) = α(µ − r2
i )xi −ωzi, g(xi,zi,yi) = α(µ − r2

i )z+ωxi, and r2
i = (xi − yi)

2 + z2
i . ki are the

coupling strengths. Indices are taken modulo 12 and εi = (−1)i+1. The resulting system bifurcates between
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a unique point attractor and a limit cycle according to one single parameter, µ (see below). It is believed

that this design enables to produce more complex movements modeled as periodic movements around time

varying offsets.

We simulate the CPG model (5). Parameter values used in the simulations are µ = 10.0, α = 5, ωstance =
6.2832 rads−1, ωswing = 6.2832 rads−1, a= 50.0, G= 1.0, δ = 10.0. We considered three periodic solutions

identified with three hexapod gaits, tripod, metachronal, and caterpillar. We computed amplitude and

frequency values of the periodic solutions produced by CPG hexapod-robot and identified with these

hexapod rhythms. We conclude that the amplitude and frequency values of the achieved stable periodic

solutions, obtained after inserting the discrete to the rhythmic primitive, are not or are only slightly affected.

Therefore, it is possible to use them for generating trajectories for the joint values of real robots, since

varying the joint offset will not affect the required amplitude and frequency of the resultant trajectory, nor

the gait.

4 Conclusion

We present a new CPG model for the locomotion rhythms of an hexapod robot, consisting of twelve CPG-

units. We study the effect on two periodic solutions, produced by this CPG model hexapod-robot, iden-

tified with tripod, metachronal and caterpillar, of superimposing discrete and rhythmic primitives. We

simulate the CPG model for synaptic and diffusive couplings. We compute the amplitude and the frequency

values of the stable periodic solutions, obtained after inserting the discrete part into the rhythmic one, for

values of the discrete primitive target parameter T ∈ [0,25]. Numerical results show that amplitude and

frequency values are almost constant for the two couplings. These results may be generalized for robots

with a smaller or larger number of legs, since the CPG model used here easily extrapolates for 2n legs.
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