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Abstract: There has been considerable development in the design of efficient controllers for trajectory follow-

ing in articulated robots with many degrees-of-freedom. Nevertheless generating trajectories online is still a

complex and unsatisfactorily solved problem.

In this paper we present a new architecture for a Central Pattern Generator (CPG), for online generation of

trajectories in quadruped robots. Our model is based on a CPG model for locomotor rhythms of quadruped

animals, proposed by Golubitsky, Stewart, Buono, and Collins. Their model consists of eight coupled cells

(CPG units) and each CPG unit is modeled as an oscillator by a system of ordinary differential equations

(ODEs).

We generalize their CPG model, considering that each cell or CPG unit is divided in rhythmic and discrete motor

primitives, modeled by simple nonlinear systems of ODEs. Superposition of discrete and rhythmic primitives

may allow for more complex motor behaviours, namely locomotion in irregular terrain and obstacle avoidance.

In this paper, the discrete primitive is inserted into the rhythmic one (i) as an offset of the solution, (ii) summed to

the solution of the rhythmic primitive. We also consider three types of couplings between CPG units: synaptic,

diffusive and mixed.

In this article we try to tackle the impact that these discrete corrections may have in the achieved system solu-

tions. Numerical results show that amplitude and frequency of the periodic solutions are almost constant for all

couplings in cases (i) and (ii). The larger variation occurs in the values of amplitude and frequency for case (i)

in the synaptic coupling.

Results are also obtained in a robotic experiment using a simulated AIBO robot that walks over a ramp. Am-

plitude and frequency may be identified, respectively, with the range of motion and the velocity of the robots’

movement.
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1 Introduction

Animal locomotion, and more specifically, goal-directed locomotion, is a complex process, that is generally

divided onto three distinct main subsystems, each playing a different role( [9, 29, 15, 42, 48]). The gener-

ation of the rhythmic patterns is done by neural networks, the so-called central pattern generators (CPGs),

located in the spinal cord. These networks send signals to the musculo-skeletal system, in order to produce

torques in the different joints of the animals.The second subsystem, consisting of the brainstem command

systems, integrates visual, sensory and vestibular inputs to control both steering and posture. The last sub-

system, the basal ganglia, selects which motor primitive is activated at a given time. It has a very important

role in determining which CPGs should be active at a given instant. The basal ganglia receives input from

the cortex and the thalamus [26, 28].

In this paper we focus on the CPG locomotor models. CPGs are commomly modeled by coupled

dynamical systems [8, 10, 6, 7, 43].

CPG-like coupled cell systems are able to produce sustained rhythmic activation patterns even when

isolated from external stimuli [34]. This feature makes them suitable to model the control of legged robot

locomotion for bipedal, quadrupedal and other designs. Other nice properties of dynamical systems are

the low computational cost, the robustness against perturbations, smooth online modulation of trajectories,

through changes in parameter values of the ODEs, and phase-locking between the different oscillators [51,

52, 16, 44, 4, 11]. It is also demonstrated that CPG-like controllers can be successfully implemented as

analog electronic circuits [32].

Schöner et al [47] propose a set of organizational principles that allow an autonomous vehicle to perform

stable planning, make planning decisions, and integrate redundant as well as complementary information.

Yang et al [54] propose a biologically inspired neural network model to real-time collision-free motion

planning of mobile robots or manipulators in a nonstationary environment. Righetti et al [45] use symmetric

coupled systems theory ([19]) to design a generic coupling architecture for a CPG and show how it can be

applied to the control of a crawling humanoid robot. Dégallier et al [11] use a dynamical systems’ approach

to do online generation of trajectories in a robot performing a drumming task. Nakamura et al [40] present

a reinforcement learning method, labelled ”CPG-actor-critic” method, based on the training of the CPG,

allowing the biped robot not only to walk stably, but also to adapt to environmental changes. Lee et al [31]

study a CPG-based analog controller, to generate adaptive walking motor programs of autonomous robots.

Righetti et al [44] design a CPG architecture based on coupled dynamical systems where gait transition

is achieved by parameter change and where sensory feedback is included. Zhang et al [55] present a

bionic neural network model for fish-robot motion. This model consists of one high level controller and

one chain of central pattern generators. Matos et al [36] propose a bio-inspired robotic controller able to

generate locomotion and to easily switch between different types of gaits. The duty factor and the interlimb

phase values are adjusted according to the velocities. This improves the robot stability and response during

locomotion. Wu et al [53] use a biomimetic approach to control a snake-like robot with a large number of

degrees of freedom. This method is based on networks of central pattern generators. These networks have a

feedback term which can generate uniform outputs without any adjustment. Or [41] presents a new hybrid

CPG-ZMP control system for the walking of a simulated flexible spine humanoid robot. His results show

that the robot is able to adapt its spine motions in real-time to allow stable walking.

In this work, we focus on the design of a new CPG model, (quad-robot), for movement generation in a

quadruped robot. It consists of eight symmetrically coupled CPG units.

The proposed CPG model quad-robot is based on a CPG for quadruped animals that was proposed by

Golubitsky et al [21, 22]. Golubitsky et al [21, 22] prove that this is the minimal CPG capable of producing
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the quadruped gaits of walk, trot and pace . Moreover, they also show that a CPG with a fewer number of

cells, can not produce the rhythms associated to these gaits, in a biologically reasonable way. A CPG with

four cells does not suffice, since trot and pace would be conjugated solutions symmetrically related and

having the same stability properties. But trot and pace are distinct solutions, since, (1) camels and giraffes

pace but do not trot, and horses trot and do not pace, unless taught [25, 30], and (2) stability of trot and pace

is not the same [2]. Thus, it makes sense that minimal locomotor CPG networks for quadruped animals

should have eight cells, that is, should have two cells for each leg.

Righetti et al [44, 45] propose CPG network models for quadruped robots with only four cells. Un-

wanted conjugacies between trot and pace presented in these CPG models force them to use different

networks for generating all of the primary gaits of bound, trot , walk, and pace.

We assume a modular approach to movement generation, in which different combinations of a finite

set of stable motor primitives organized at the spinal level result in movement generation [see [3] for a

review]. In this article, motor primitives are defined relative to the movement they produce. They are simple

commands from the brain that activate sets of muscles such that the resultant movement is as desired.

We assume two motor primitives, discrete and rhythmic. Further, we consider that each CPG unit

is divided onto these two motor primitives, which are mathematically modelled by nonlinear dynamical

systems. This movement decomposition and the chosen primitives are supported by current neurological

and human motor control findings, specially considering the concepts of central pattern generators (CPGs)

and force fields [see reviews by [3, 28]], and it has been often used in robotics both for generating movement

and for selecting responses.

In [13] it was proposed a bio-inspired architecture functionally organized onto hierarchical layers ac-

cording to their level of abstraction. This work applied the dynamical systems proposed in [11]. Such a

simplified view of movement generation was further explored in [14] to reflect upon the potential differ-

ences between generation of discrete and rhythmic movements. They have proposed several mathematical

models, based on the concept of motor primitives, according to four simple categories, that are able to

produce both discrete and rhythmic trajectories.

In this article, we tackle a similar problematic, but the main focus relies on the different ways of em-

bedding the generated motor primitives. We superpose both primitives using two different approaches. The

discrete primitive is: i) added as an offset to the rhythmic primitive (similarly to the solution proposed

in [11, 13, 36]); and ii) summed to the rhythmic primitive according to (similarly to the solution proposed

in [12, 49]).

Furthermore, we also consider three types of couplings between the CPG units: synaptic, diffusive and

mixed.

Several works in the robotics community have applied different models for movement generation based

on the concept of motor primitives, but never addressed or explored which were effectively the changes

introduced onto the systems solution when the discrete primitive target was changed. Herein, we vary the

target of the discrete primitives and verify the obtained changes in the values of the amplitude and frequency

of the achieved periodic solutions, for each primitive combination and type of coupling.

Amplitude and frequency may be identified, respectively, with the range of motion and the velocity

of the robot’s movements, when considering implementations of the proposed controllers for generating

trajectories for the joints of real robots. Further, the adjustment of the target of the discrete primitive may

be identified with postural control, locomotion over irregular terrains or obstacle avoidance, modelled as

discrete, sensory driven corrections of the steady-state locomotion rhythmic patterns.

This article tries to show that these discrete corrections may be performed since that they do not affect

the required amplitude and frequency of the resultant trajectories, nor the gait.

Numerical simulations results show that amplitude and frequency of the periodic solutions are almost

constant for all couplings and combination of the two motor primitives.

A robotic experiment applies the proposed controller and shows the effectiveness of a controller that

integrates both postural and rhythmic movement control. Trajectories generated by this controller are mod-

ulated by sensory feedback, according to the lateral tilt of the body similarly to work proposed by the

authors in [49]. While walking the robot is faced with a ramp on its right side, which displaces its roll
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angle. The robot moves forward but keeps its body almost parallel to the ground.

Outline of the paper

In section 2, we show the CPG architecture, the general class of ODEs that model the CPG quad-robot,

and resume the symmetry techniques and bifurcation theory used in the classification of the periodic solu-

tions produced by quad-robot, and their identification with quadruped locomotor patterns. In section 3,

we simulate the CPG model using three distinct couplings and two ways of superposing the discrete and

rhythmic primitives. We use the Hopf oscillator to model the rhythms and an inspired VITE model for the

discrete primitive. In section 4, we perform a robotic experiment in which the proposed controller generates

movements for locomotion and posture correction which are modulated according to sensory information.

In section 5, we state the main conclusions and unravel some future research directions.

2 CPG Locomotion Model Architecture

In this section we introduce the CPG model for online generation of trajectories of quadruped robots.

The CPG model is based in the CPG model for quadrupeds locomotor rhythms, proposed by Golubitsky et

al [21, 22]. The eight coupled CPG units consist in two primitives: rhythmic and discrete. The superposition

of rhythmic and discrete primitives allows for complex locomotor behaviour. We resume the symmetry

techniques that allow classification of periodic solutions produced by the CPG model and identification

with quadruped locomotor patterns.

2.1 CPG quadruped model design

In Figure 1 is it presented the CPG model quad-robot for generating locomotion for quadrupeds robots. It

is based on a CPG for quadruped animals that was proposed by Golubitsky et al [21, 22]. The derivation

of the CPG model by Golubitsky et al has a physiological interpretation. Each leg receives signals from

two cells, in analogy to what happens in most animals’ joints, where control is done mainly by two muscle

groups.

Coupled cells networks can be represented by directed graphs whose nodes (cells) are identified with

dynamical systems and whose edges (arrows) represent the couplings between them [50, 18, 17, 23, 19].

Different node/cell symbols represent distinct internal dynamics. Different couplings are drawn as different

styles of edges/arrows. The CPG network model quad-robot in Figure 1 depicts an example of a coupled

cells network in which the nodes are indicated by circles and arrows represent couplings.

The proposed model is a network of 8 coupled cells, LFi (left fore leg cells), RFi (right fore leg cells),

LHi (left hind leg cells), and RHi (right hind leg cells), i = 1,2. The cells with i = 2 are considered a hidden

layer. Each cell is a CPG unit and is divided onto two motor primitives, discrete and rhythmic, modelled by

simple nonlinear dynamical systems.

The model has the bilateral symmetry of animals (Z2(κ)) and a cyclic translational symmetry (Z4(ω)),
from back to front, i.e, cell RF2 is coupled to cell RH1, and the same applies for cells LF2 and LH1.

The full symmetry group is the eighth order group given by:

Γquad−robot = Z4(ω)×Z2(κ)

Symmetry seems a reasonable modeling assumption, though real life animals are not perfectly sym-

metric. Symmetry helps to explain, in particular, features like the phase of the gait cycle at which a given

limb touches the ground, or the proportion of the gait cycle that a limb is in contact with the ground (‘duty

factor’). The phases and the duty factors help to distinguish and identify the gaits.

Moreover, there are particular phase relations in animals gaits. In a biped walk, left and right legs

are half-period out of phase, a quadruped when performing a trot has diagonal pairs of legs moving syn-

chronously, with the two pairs being half-period out of phase. In a hexapod metachronal gait, left and

right legs are half-period out of phase. The major phase shifts observed in locomotor rhythms are simple
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Figure 1: CPG locomotor model for quadrupeds, quad-robot. LFi (left fore leg cells), RFi (right fore leg

cells), LHi (left hind leg cells), RHi (right hind leg cells), i = 1,2. Each leg receives signals from two cells

(oscillators).

fractions of the period, suggesting that the model CPG might have some symmetry, since these particular

phase shifts are unusual in asymmetric systems. CPG models for animals with a large number of identical

segments, such as arthropods, should also have (maybe imperfect) translational symmetry, since ‘identical

segments’ imply some degree of symmetry.

In Robotics, locomotor CPG networks for legged robots also show some degree of symmetry, namely

bilateral [33, 52, 1] or dihedral symmetry [45, 44].

2.2 CPG model equations

The network architecture corresponds to a class of systems of differential equations [23]. Each of these

systems can be considered to be a model CPG.

For example, the class of systems of differential equations of the CPG model for the quadruped model

quad-robot is of the form:

ẋLH1
= F(xLH1

,xRH1
,xLF2

)
ẋRH1

= F(xRH1
,xLH1

,xRF2
)

ẋLF1
= F(xLF1

,xRF1
,xLH1

)
ẋRF1

= F(xRF1
,xLF1

,xRH1
)

ẋLH2
= F(xLH2

,xRH2
,xLF1

)
ẋRH2

= F(xRH2
,xLH2

,xRF1
)

ẋLF2
= F(xLF2

,xRF2
,xLH2

)
ẋRF2

= F(xRF2
,xLF2

,xRH2
)

(2.1)

where xi ∈ Rk is the cell i variables, k is the dimension of the internal dynamics for each cell, and F :

(Rk)3 → Rk is an arbitrary mapping. The fact that the dynamics of each cell is modeled by the same

function F indicates that the cells are assumed to be identical.
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2.3 Spatio-temporal symmetries: brief review

In this section we review the concepts of spatial and spatiotemporal symmetries of periodic solutions of a

system of differential equations. We then explain why these symmetries can be associated with gait patterns

in animals locomotor CPG models.

Let Γ be a finite group of symmetries of the following systems of ODEs:

dx

dt
= f (x) (2.2)

Let x(t) be a periodic solution of system 2.2, with period normalized to 1, and let γ ∈ Γ. By symmetry,

we know that γx(t) is also a solution to (2.2). We consider two cases, either both solutions intersect (thus,

are identical) or the two trajectories do not intersect.

Consider that both solutions are identical, then by uniqueness of solutions there is θ ∈ S1 such that

γx(t) = x(t −θ ) or γx(t +θ ) = x(t)

and we say that x(t) has spatio-temporal symmetry γ ∈ Γ, where θ is the temporal phase shift that corre-

sponds to γ . If θ = 0, then γ is a spatial symmetry.

Define K to be the subgroup of all spatial symmetries and H to be the subgroup of all spatiotemporal

symmetries. Mathematically, we have:

K = {γ ∈ Γ : γx(t) = x(t) for all t}
H = {γ ∈ Γ : γ{x(t)}= {x(t)} for all t}. (2.3)

Next we discuss how symmetries of periodic solutions (H and K) in quad-robot (Figure 1) can corre-

spond to the quadruped gaits of bound and trot. Let κ be the permutation that switches signals sent to left

and right legs in quadrupeds. Applying κ to the bound does not change that gait since muscles groups in left

and right legs receive the same set of signals. Applying κ to the trot does change the gait, in the sense that

the muscle groups inside each leg receive signals that are now a half-period out of phase from the signals

they received previously. The later implies that the legs are also half-period out of phase from where they

were before applying κ . The permutation κ is called a spatial symmetry for the bound (the phase shift is

zero) and is called a spatiotemporal symmetry for the trot (the phase shift is 1/2). More precisely, applying

κ to a trot and then performing a half-period phase shift does not change the trot gait.

Mathematically, suppose that H = Γquad−robot and K = Z2(κ). Let x(t) = (xLH1
(t), . . . ,xRF2

(t)) be a

1-periodic solution with H and K symmetries. Since κ is a K symmetry the periodic solution must satisfy

xLH1
(t) = xLF1

(t) = xLH2
(t) = xLF2

(t) and

xRH1
(t) = xRF1

(t) = xRH2
(t) = xRF2

(t)

Since ω is a spatiotemporal symmetry, xRH1
(t) = xLH1

(t + 1
2
). Thus

x(t) = (xLH1
(t),xLH1

(t + 1
2
),xLH1

(t),xLH1
(t + 1

2
),

xLH1
(t),xLH1

(t + 1
2
),xLH1

(t),xLH1
(t + 1

2
))

Note that the signals that go to muscle groups inside each leg are the same, whereas signals that go to the

fore legs are half-period out of phase with the signals that go to the hind legs. Thus this rhythm is a bound.

The same reasoning applies to the trot, with H = Γquad−robot and K = Z2(ωκ).

Finally, we note that there is a mathematical theory that enables us to infer the CPG structure from

the desired types of periodic solutions. The H/K Theorem [7] uses the symmetry group of a network to

enumerate those pairs of spatiotemporal symmetry subgroups H and K that can correspond to periodic

solutions of differential equations associated to the network.
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2.4 Gaits produced by the CPG model

Gaits can be divided in two types: primary and secondary gait types. In primary gaits, muscle groups

receive the same sinal up to a phase shift (H = Γquad−robot) [7]. In secondary gaits muscle groups receive

two different signals (H ⊂ Γquad−robot) [6].

The proposed CPG model for quadrupeds, quad-robot, is the (unique) eight-cell network that can

produce periodic solutions corresponding to the common quadrupedal gaits of walk, trot, and pace [21,

22]. Additionally, it predicts the jump, bound, pronk, and twelve more rhythmic locomotor patterns. In

Tables 1-2, we write the symmetry pairs and the corresponding periodic solutions corresponding to common

quadruped gaits.

H K Name

Γquad−robot Γquad−robot pronk

Γquad−robot Z4(ω) pace

Γquad−robot Z4(ωκ) trot

Γquad−robot Z2(ω
2κ) walk

Z4(ω) Z2(ω
2) transverse gallop

Z4(ωκ) Z2(ω
2) rotary gallop

Table 1: Symmetry pairs of periodic solutions identified with quadruped gaits.

LH RH LF RF Name

(xLH1
,xLH1

) (xLH1
,xLH1

) (xLH1
,xLH1

) (xLH1
,xLH1

) pronk

(xLH1
,xLH1

) (xS
LH1

,xS
LH1

) (xLH1
,xLH1

) (xS
LH1

,xLH1
)S pace

(xLH1
,xLH1

) (xS
LH1

,xS
LH1

) (xS
LH1

,xS
LH1

) (xLH1
,xLH1

) trot

(xLH1
,xS

LH1
) (xS

LH1
,xLH1

) (xSS
LH1

,xSSS
LH1

) (xSSS
LH1

,xSS
LH1

) walk

(xLH1
,xLH1

) (xRH1
,xRH1

) (xS
LH1

,xS
LH1

) (xS
RH1

,xS
RH1

) transv. gal.

(xLH1
,xLH1

) (xRH1
,xRH1

) (xS
RH1

,xS
RH1

) (xS
LH1

,xS
LH1

) rot. gal.

Table 2: Periodic solutions identified with quadruped gaits, where period of solutions is normalized to 1.

Each leg receives a pair of periodic solutions, from (non hidden, hidden)) layers. S is half period out of

phase, SS is a quarter of period out of phase and SSS is three quarters of period out of phase.

A CPG model with a fewer number of cells cannot predict gaits like walk, trot, and pace. In this case,

it is necessary to consider different architectures, with different symmetry groups, in order to obtain all of

the quadruped usual gaits. In these models, each leg receives only one signal. Collins and Stewart [10]

describe 5 different architectures for a CPG model for quadruped rhythms. Each of these network models

has a distinct symmetry type. All together, these CPG models predict gaits like walk, trot, and pace.

Nevertheless, it is not expected that animals switch between distinct CPG models in order to switch gaits.

Moreover, in these networks trot and pace exist simultaneously and have the same stability properties, being

conjugated solutions. As it is proved that (1) camels and giraffes pace but do not trot, and horses trot and

do not pace, unless taught [25, 30], and (2) stability of trot and pace is not the same [2], then trot and pace

must not be conjugated solutions.

3 Numerical Simulations

We simulate the CPG model quad-robot. We use a modified Hopf oscillator [24, 35] to model cell’s rhtyh-

mic internal dynamics and another system of ordinary differential equations, based in the VITE model [5],

for the discrete primitive.
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The superposition of discrete and rhythmic primitives is done using two distinct approaches. The dis-

crete primitive, y(t), is: (i) added as an offset of the rhythmic solution x(t); (ii) summed to the solution

x(t). We also consider three types of coupling between CPG units : synaptic, diffusive and mixed. We vary

parameter g and compute, for each value of g, the amplitude and the frequency of two periodic solutions,

identified with the quadruped rhythms of trot and pace.

Numerical results are illustrated.

3.1 CPG model quad-robot

In our CPG model quad-robot , each CPG unit (or cell) combines two motor primitives, discrete and

rhythmic, modeled as simple nonlinear dynamical systems. The rhythmic motor primitive is modeled by a

modified Hopf oscillator [24, 35], and another system of ordinary differential equations, based in the VITE

model [5], models the discrete primitive.

Discrete primitives

The system of ordinary differential equations that models the discrete primitive is given by:

ḣ = d(p− h)
ẏ = h4v

v̇ = p
4−b2

4 (y− g)− bv

(3.4)

where y converges asymptotically and monotonically to a goal g. The speed of this convergence is controlled

by b and v is the bell-shape velocity curve. h converges to p and is reset to zero at the end of each movement.

Rhythmic primitive

Modified Hopf oscillators have been used in the generation of the rhythmic primitive of robots trajecto-

ries [11, 45, 44, 36]. The equations for the single Hopf oscillator are given by:

ẋ = α(µ − r2)x−ωz = f (x,z)
ż = α(µ − r2)z+ωx = g(x,z)

(3.5)

where r2 = x2 + z2,
√

µ is the amplitude of the oscillation. For µ < 0 the oscillator is at a stationary state,

and for µ > 0 the oscillator is at a limit cycle. At µ = 0 it occurs a Hopf bifurcation.

Parameter ω is the intrinsic frequency of the oscillator, α controls the speed of convergence to the limit

cycle. ωswing and ωstance are the frequencies of the swing and stance phases, ω(z) = ωstance

exp(−az)+1
+

ωswing

exp (az)+1

is the intrinsic frequency of the oscillator (verify [45] for more details).With this ODE system, we can

explicitly control the ascending and descending phases of the oscillations as well as their amplitudes, by

just varying parameters ωstance, ωswing and µ .

Superposition of rhythmic and discrete primitives

The superposition of discrete and rhythmic primitives is herein done using two distinct approaches, sum-

marized in Figure 2. The discrete primitive, y(t) is: (i) added as an offset of the rhythmic solution x(t); (ii)

summed to the solution x(t).

Case (i)

In this case, the discrete primitive is embedded onto the rhythmic one as an offset and their superposition

is given by:

ẋi = α(µ − r2
i )(xi − yi)−ωzi = f1(xi,zi)

żi = α(µ − r2
i )zi +ω(xi− yi) = g1(xi,zi),

(3.6)
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f(x,z)
g(x,z)

y

VITE

x

CPG unit

(a) case i)

f(x,z)
g(x,z)

y

VITE

x

CPG unit

x

+ +
-

(b) case ii)

Figure 2: CPG unit of a CPG locomotor model for quadruped robots (quad-robot). (left) case (i). (right)

case (ii).

where r2
i = (xi − yi)

2 + z2
i .

In this system, similar to the one presented in drumming [11] and extended in [36] both discrete and

rhythmic primitives are generated through a unique set of differential equations. The system bifurcates

between a unique point attractor and a limit cycle according to one single parameter, µ . It is believed that

this design enables to produce more complex movements modelled as periodic movements around time

varying offsets.

Case (ii)

In this case, the discrete primitive yi(t) is summed to the solution of the single Hopf oscillator given by

Eq. 3.5, as xi(t)− yi(t) or as xi(t)+ yi(t).

CPG Network

We consider three types of coupling between CPG units: synaptic, diffusive and mixed. The coupled

systems of ODEs that model CPG quad-robot for diffusive, synaptic and mixed couplings are given by:

ẋi = f2(xi,zi)+ k1h1(xi−2,xi)+ k2h2(xi+εi
,xi)

żi = g2(xi,zi)+ k3h2(zi−2,zi)+ k4h2(zi+εi
,zi)

(3.7)

where f (xi,zi), g(xi,zi), and r2
i are as defined by Eq. 3.6 for case (i), and by the single Hopf oscillator

(Eq. 3.5) for case (ii), εi = (−1)i+1, and indices are taken modulo 8. Function hl(xi,x j), l = 1,2, represents

synaptic coupling when written in the form hl(xi,x j) = x j, l = 1,2, and diffusive coupling when written as

hl(xi,x j) = x j − xi, l = 1,2. Functions h1(xi,x j) = xi − yi and h2(xi,x j) = x j indicate mixed coupling. For

case (i), we let f2(xi,zi) = f1(xi,zi) and g2(xi,zi) = g1(xi,zi). For case (ii), we consider f2(xi,zi) = f (xi,zi)
and g2(xi,zi) = g(xi,zi).

3.2 Simulations

We simulate the CPG model quad-robot, for t = 128. Parameter values used in the simulations are µ =
10.0, α = 5, ωstance = 6.2832 rads−1, ωswing = 6.2832 rads−1, a = 50.0.
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Amplitude and frequency of periodic solutions

Figures 3.2- 3.2 show amplitude (TOP) and frequency (BOTTOM) values produced by CPG quad-robot

and identified with pace (left) and trot (right), for varying g ∈ [−25,25] in steps of 0.1, in cases (i) (dashed

line) and (ii) (filled line) for synaptic and mixed coupling, respectively. The values of g not plotted in the

graphs are those for which the solution goes to equilibrium. The diffusive coupling graphs have shown

horizontal lines for all the graphs. Thus frequency and amplitude are independent of the variation of the

goal value.
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Figure 3: Amplitude (TOP) and frequency (DOWN) of the periodic solutions produced by CPG quad-

robot and identified with pace (LEFT) and trot (RIGHT), for varying g ∈ [−25,25] in steps of 0.1, in cases

(i) (dashed line) and (ii) (filled line) for synaptic coupling. For more information see text.

We verify that trot and pace periodic solutions are not affected in terms of time of convergence for the

different cases of discrete and rhythmic superposition. Main differences arise in the offset of the solutions.

In all three cases, the amplitude and frequency are almost constant. The cases where there is more

variation of amplitude and frequency values is when the coupling is either synaptic or mixed and the discrete

primitive is inserted into the rhythmic one as an offset (case (i)).

Absolute error

Figure 5 depicts the absolute values of the error in the amplitude values of the purely rhythmic periodic

solutions, identified with the quadruped gaits of pace (LEFT) and trot (RIGHT), when the discrete primitive
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Figure 4: Similar to Figure 3.2 but for mixed coupling. For more information see text.

is inserted as in case (i) (TOP) and in case (ii) as xi(t)± yi(t) (BOTTOM), for varying values of g (x-axis),

for diffusive (solid line), synaptic (dashed line) and mixed (dashed-dotted line) coupling.

Absolute values of the error in the frequency values are depicted in Figure 6. Note that when the discrete

primitive is inserted as in case (ii), absolute error values in the amplitude and frequency were identical for

insertion as xi(t)± yi(t).
We have computed the trendline that better describes the error function. We have found that it has

quadratic form for all types of coupling and for the three forms of inserting the discrete primitive into the

rhythmic one. These trendlines are surveyed in table 3. These figures enable us to draw the following

conclusions. (1) The error is zero for diffusive coupling. (2) If there is error, for synaptic (trot and pace)

and mixed (trot) types of coupling, the error is as high as the absolute value of g. Precisely, the error varies

in a quadratic form with g, and is zero for g = 0. (3) When the discrete primitive is summed to the solution

of the rhythmic part (case ii)), the obtained solutions seem to present a smaller error.

Discussion

In survey, from the observation of the graphs, we conclude that the coupling that provides the best result is

the diffusive coupling. In this case, there is no difference between cases (i) and (ii). A possible explanation

for this fact is that the transient of the periodic solution, obtained after insertion of the discrete part (for

t = 128), is smaller for the case of diffusive coupling than for the cases of synaptic and mixed couplings. It

means that, for the later, there is a bigger perturbation of the rhythmic part, caused by the discrete primitive.
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Figure 5: Absolute error in the amplitude values of the periodic solutions produced by CPG quad-robot

and identified with pace (LEFT) and trot (RIGHT), for varying g, for diffusive (filled line), synaptic (dashed

line) and mixed (dashed-dotted line) coupling, when the discrete primitive is inserted as in case i) (TOP)

and as in case ii), as f (xi(t),zi(t))− yi(t) (BOTTOM).

Nevertheless, from a mathematically point of view, if simulated these solutions for more time, then this

transient would disappear and there wouldn’t be any differences in amplitude and frequency values. The

periodic solution tends asymptotically for a solution with the same amplitude and frequency than before,

but with a different offset. This fact will be explained in a future work.

In general, the case that performs the best for all couplings is case (ii), where the discrete primitive is

summed to the solution of the rhythmic one. By ’best’, we mean that the amplitude and frequency values

of the achieved periodic solutions, obtained after superimposing the discrete to the rhythmic primitive, are

not or are only slightly affected. Therefore, it is possible to use them for generating trajectories for the joint

values of real robots, since varying the joint offset will not affect the required amplitude and frequency of

the resultant trajectory, nor the gait.

CARLA: Could authors give any mathematical reason for such kind of dynamical behaviour to occur?

Table 3: Values for the quadratic forms of error trendlines for all types of coupling and combination of

discrete and rhythmic primitives. R2 is the square of the correlation coefficient.
Amplitude Frequency

Synaptic Diffusive Mixed Synaptic Diffusive Mixed

Trot

Case (i) y = 0.0011x2

R2 = 0.9969

0 y = 0.0003x2

R2 = 0.987

y = 0.0041x2

R2 = 0.9979

0 y = 0.001x2

R2 = 0.9928

Case (ii)

x± y

0 0 y = 0.0003x2

R2 = 0.992

0 0 y = 0.001x2

R2 = 0.9931

Pace

Case (i) y = 0.00005x2 R2 =
0.9739

0 0 y = 0.0003x2

R2 = 0.964

0 0

Case (ii)

x± y

0 0 0 0 0 0
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Figure 6: Similar to figure 5 but for the absolute value of the error in the frequency values.

4 Robotic Experiment

Several experiments were performed to verify the adequacy of the locomotor CPG network to movement

generation. Experiments were performed on the webots [37] robotics simulator. Webots is a software for

the physic simulation of robots based on ODE, an open source physics engine for simulating 3D rigid body

dynamics.

4.1 Robotic setup

In this work we use a simulated AIBO ERS-7 quadruped robot manufactured by Sony to demonstrate the

feasibility of the proposed system. The AIBO dog robot is a 18 DOFs quadruped robot that, unlike its

natural counterpart, has three joints per limb, with different configurations of a real dog limbs. Besides, the

robot body and limbs are rigid with non-compliant servo joints. The joints are stiff, without any elasticity,

and their position is specified by an angle value. The durations of the achieved step phases have to be

limited, because the joints present timing constraints on movement executions.

We control the four hip-swing degrees-of-freedom (DOFs) (fig. 7).

The AIBO has a 3-axis accelerometer built into its body that enables us to calculate the lateral tilt (roll)

of the robot body.

4.2 Postural Control

The proposed postural control system generates movements both for locomotion generation and for posture

correction and it is based on past work [49]. It enables integration of sensory feedback such that movements

are robustly generated and adapted to the environment.

This controller is modeled by the previous described autonomous differential equations, whose intrinsic

properties provide for the required features. For instance, sensory information is noisy and changes as a

result of the generated robot movement.
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Figure 7: Schematic view of the ERS-7 AIBO model depicting the controlled swing DOFs for the left side.

The objective of this controller is to adjust the body inclination, opposing to changes in terrain slope, so

that the roll is reduced to a minimum. Slope compensation is achieved through extension and flexion of the

legs, changing the legs height , according to the offset yi value given by the discrete primitive.

For offset yi specification, we measure the lateral tilt of the body, φ . We want to stretch the legs towards

which the robot is tilted, and fold the other legs, thus reducing the robot lateral tilt and keeping the body

parallel to the ground. This is achieved by reducing the swing joint values of the former and increasing

these joint values for the later. The effect of this offset joint change should be of opposite effect on the

left and right legs of the robot, but should also influence similarly both legs. This postural correction is

illustrated in fig. 8.

Figure 8: Robot’s roll angle is adjusted by extending/flexing the front/rear legs in coordination.

The final trajectories xi specify the planned swing joint values needed to reduce the lateral tilt to a

minimum. These are sent online for each DOF and the lower level control is done by PID controllers.

Because motion is sufficiently slow there is no need to apply inverse dynamics.

We set the frequency to ωsw = 6.28 rad.s−1 in regards with the motor limitations. Further, the dynamical

parameters controlling the speed of convergence of unit-CPGs were set to 1
2αi µi

= 0.01 s, in regard to

stability during the integration process and to feasibility of the desired trajectories.

At each sensorial cycle, dynamic equations are calculated and numerically integrated using the Euler

method with a fixed time step of 1 ms, thus specifying servo positions. The robot control loop is measured

and has 8 ms.

4.3 Experiments

Many possible motions were experimented over several runs by specifying different offset values of the

joints. Due to space constraints, we only depict a more complex experiment in which while walking the

robot is faced with a ramp on its right side, displacing its roll angle. The ramp inclines the robot towards

the side. It is expected that the robot keeps moving forward but tries to suppress the ramp inclination to
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values near zero, by adjusting the offset value of the generated trajectories, keeping the body parallel to the

ground.

The robot behaves as expected and moves forward over the ramp but keeping its body almost parallel to

the ground. Fig. 9 provides for a visual comparison of the experiment when there is (TOP) and there is no

(BOTTOM) roll compensation as snapshots at time t = 5 s, t = 15 s and t = 25 s. The overall experiment

can be seen in the attached video.

Note that the ramp has an inclination adequate to the robot size. The role of the feedback is to keep the

body parallel to the ground while locomoting. Larger values of the ramp would make it impossible for the

robot to go ahead with its body parallel to the ground.

5 s 15 s 25 s

5 s 15 s 25 s

Figure 9: Snapshots showing that while walking the robot is faced with a ramp on its right side. TOP: The

robot compensates the ramp inclination by adjsuting the offset value of the swing trajectories. BOTTOM:

The robot inlcines with the ramp because there is no postural correction system for roll compensation.

Fig 10 depicts time courses of the roll (TOP) and of the generated left (MIDDLE) and right (BOTTOM)

hip swing trajectories for both fore legs. Solid and dotted lines correspond to data acquired when there is

and there is not roll compensation, respectively.

The robot roll angle shows a displacement of almost 10◦ while the robot walks over the ramp (dotted

line, top panel), from 5 s to 10 s, and the ramp inclination is positive.

This roll angle displacement is suppressed when the roll compensation is activated (solid line, top panel),

by means of changing leg height through offset modulation (solid lines, bottom panels).

Left and right fore offsets are changed symmetrically, the left legs are extended (cyan line, middle

panel) and the right legs are flexed (yellow line, bottom panel), changing the posture of the robot’s body

while walking over the ramp suppressing the roll displacement to around 0◦ (solid line, top panel).

At t ≈ 20s, the ramp inclination becomes negative and the robot starts to move downhill. The postural

control tries to take the roll towards zero during the robot movement by flexing the left legs and extending

the right ones to the original posture.

5 Conclusion

We propose a new CPG locomotor model for quadruped robots patterns. This model is based in a CPG

model for quadrupeds, developed by Golubitsky et al. We consider that the CPG model consists of eight
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Figure 10: Time courses of variables corresponding to the experiment depicted in fig. 9. Solid and dotted

lines correspond to data acquired when there is and there is not roll compensation, respectively. TOP: roll;

MIDDLE: left fore hip swing trajectory; and BOTTOM: right fore hip swing trajectory.

coupled CPG units, where each CPG unit combines two motor primitives, discrete and rhythmic.

We simulate the CPG model considering two distinct ways of superimposing the discrete and rhythmic

primitive and for three distinct coupling functions. For each case, we compute the amplitude and the

frequency values of the periodic solutions identified with trot and pace, for values of the discrete primitive

target parameter g ∈ [−25,25]. Numerical results show that amplitude and frequency values are almost

constant. The cases where there is more variation for these values is when the coupling is either synaptic or

mixed and the discrete primitive is inserted into the rhythmic primitive as an offset (case (i)). The coupling

that provides the best result is the diffusive coupling. In this case there is no difference between cases (i)

and (ii). In general, the case that performs the best for all couplings is case (ii), where the discrete primitive

is summed to the solution of the rhythmic one.

The controller is also validate in a robotic experiment where adjustment of the target of the discrete

primitive is identified with postural control, that models as discrete, lateral tilt driven corrections the steady-

state locomotion rhythmic patterns.
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